首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   39篇
  2023年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   6篇
  2013年   10篇
  2012年   7篇
  2011年   10篇
  2010年   16篇
  2009年   11篇
  2008年   13篇
  2007年   13篇
  2006年   8篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   12篇
  2001年   8篇
  2000年   11篇
  1999年   14篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1982年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1971年   2篇
  1970年   4篇
  1968年   4篇
  1967年   6篇
  1966年   2篇
  1965年   3篇
  1960年   2篇
  1957年   2篇
  1939年   1篇
  1906年   1篇
排序方式: 共有280条查询结果,搜索用时 46 毫秒
31.
Resistance to conventional anticancer therapies in patients with advanced solid tumors has prompted the need of alternative cancer therapies. Moreover, the success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity to normal tissues. Several decades after Coley's work a variety of natural and genetically modified non-pathogenic bacterial species are being explored as potential antitumor agents, either to provide direct tumoricidal effects or to deliver tumoricidal molecules. Live, attenuated or genetically modified non-pathogenic bacterial species are capable of multiplying selectively in tumors and inhibiting their growth. Due to their selectivity for tumor tissues, these bacteria and their spores also serve as ideal vectors for delivering therapeutic proteins to tumors. Bacterial toxins too have emerged as promising cancer treatment strategy. The most potential and promising strategy is bacteria based gene-directed enzyme prodrug therapy. Although it has shown successful results in vivo yet further investigation about the targeting mechanisms of the bacteria are required to make it a complete therapeutic approach in cancer treatment.  相似文献   
32.

Background

Studies on host-pathogen interactions in a range of pathosystems have revealed an array of mechanisms by which plants reduce the efficiency of pathogenesis. While R-gene mediated resistance confers highly effective defense responses against pathogen invasion, quantitative resistance is associated with intermediate levels of resistance that reduces disease progress. To test the hypothesis that specific loci affect distinct stages of fungal pathogenesis, a set of maize introgression lines was used for mapping and characterization of quantitative trait loci (QTL) conditioning resistance to Setosphaeria turcica, the causal agent of northern leaf blight (NLB). To better understand the nature of quantitative resistance, the identified QTL were further tested for three secondary hypotheses: (1) that disease QTL differ by host developmental stage; (2) that their performance changes across environments; and (3) that they condition broad-spectrum resistance.

Results

Among a set of 82 introgression lines, seven lines were confirmed as more resistant or susceptible than B73. Two NLB QTL were validated in BC4F2 segregating populations and advanced introgression lines. These loci, designated qNLB1.02 and qNLB1.06, were investigated in detail by comparing the introgression lines with B73 for a series of macroscopic and microscopic disease components targeting different stages of NLB development. Repeated greenhouse and field trials revealed that qNLB1.06 Tx303 (the Tx303 allele at bin 1.06) reduces the efficiency of fungal penetration, while qNLB1.02 B73 (the B73 allele at bin 1.02) enhances the accumulation of callose and phenolics surrounding infection sites, reduces hyphal growth into the vascular bundle and impairs the subsequent necrotrophic colonization in the leaves. The QTL were equally effective in both juvenile and adult plants; qNLB1.06 Tx303 showed greater effectiveness in the field than in the greenhouse. In addition to NLB resistance, qNLB1.02 B73 was associated with resistance to Stewart's wilt and common rust, while qNLB1.06 Tx303 conferred resistance to Stewart's wilt. The non-specific resistance may be attributed to pleiotropy or linkage.

Conclusions

Our research has led to successful identification of two reliably-expressed QTL that can potentially be utilized to protect maize from S. turcica in different environments. This approach to identifying and dissecting quantitative resistance in plants will facilitate the application of quantitative resistance in crop protection.  相似文献   
33.
In invertebrates and vertebrates, innate immunity is considered the first line of defense mechanism against non-self material. In vertebrates, cytokines play a critical role in innate immune signalling. To date, however, the existence of genes encoding for invertebrate helical cytokines has been anticipated, but never demonstrated. Here, we report the first structural and functional evidence of a gene encoding for a putative helical cytokine in Drosophila melanogaster. Functional experiments demonstrate that its expression, as well as that of the antimicrobial factors defensin and cecropin A1, is significantly increased after immune stimulation. These observations suggest the involvement of helical cytokines in the innate immune response of invertebrates.  相似文献   
34.
35.
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer for which there is no effective treatment. Using a mouse model in which deletion of Rb1 and Trp53 in the lung epithelium of adult mice induces SCLC, we found that the Hedgehog signaling pathway is activated in SCLC cells independently of the lung microenvironment. Constitutive activation of the Hedgehog signaling molecule Smoothened (Smo) promoted the clonogenicity of human SCLC in vitro and the initiation and progression of mouse SCLC in vivo. Reciprocally, deletion of Smo in Rb1 and Trp53-mutant lung epithelial cells strongly suppressed SCLC initiation and progression in mice. Furthermore, pharmacological blockade of Hedgehog signaling inhibited the growth of mouse and human SCLC, most notably following chemotherapy. These findings show a crucial cell-intrinsic role for Hedgehog signaling in the development and maintenance of SCLC and identify Hedgehog pathway inhibition as a therapeutic strategy to slow the progression of disease and delay cancer recurrence in individuals with SCLC.  相似文献   
36.
37.
The innate immunity of Drosophila melanogaster is based on cellular and humoral components. Drosophila Helical factor (Hf), is a molecule previously discovered using an in silico approach and whose expression is controlled by the immune deficiency (Imd) pathway. Here we present evidence demonstrating that Hf is an inducible protein constitutively produced by the S2 hemocyte-derived cell line. Hf expression is stimulated by bacterial extracts that specifically trigger the Imd pathway. In absence of any bacterial challenge, the recombinant form of Hf can influence the expression of the antimicrobial peptides (AMPs) defensin but not drosomycin. These data suggest that in vitro Hf is an inducible and immune-regulated factor, with functions comparable to those of secreted vertebrate cytokines.  相似文献   
38.
39.
Survival and recurrence rates in breast cancer are variable for common diagnoses, and therefore the biological underpinnings of the disease that determine those outcomes are yet to be fully understood. As a result, translational medicine is one of the fastest growing arenas of study in tumor biology. With advancements in genetic and imaging techniques, archived biopsies can be examined for purposes other than diagnosis. There is a great deal of evidence that points to the stroma as the major regulator of tumor progression following the initial stages of tumor formation, and the stroma may also contribute to risk factors determining tumor formation. Therefore, aspects of stromal biology are well-suited to be a focus for studies of patient outcome, where statistical differences in survival among patients provide evidence as to whether that stromal component is a signpost for tumor progression. In this review we summarize the latest research done where breast cancer patient survival was correlated with aspects of stromal biology, which have been put into four categories: reorganization of the extracellular matrix (ECM) to promote invasion, changes in the expression of stromal cell types, changes in stromal gene expression, and changes in cell biology signaling cascades to and from the stroma.  相似文献   
40.
In 2005 and 2006, air samples were collected at the base of a Douglas-fir watershed to monitor seasonal changes in the delta13CO2 of ecosystem respiration (delta13C(ER)). The goals of this study were to determine whether variations in delta13C(ER) correlated with environmental variables and could be used to predict expected variations in canopy-average stomatal conductance (Gs). Changes in delta13C(ER) correlated weakly with changes in vapor pressure deficit (VPD) measured 0 and 3-7 days earlier and significantly with soil matric potential (psi(m)) (P value <0.02) measured on the same day. Midday G (s) was estimated using sapflow measurements (heat-dissipation method) at four plots located at different elevations within the watershed. Values of midday Gs from 0 and 3-7 days earlier were correlated with delta13C(ER), with the 5-day lag being significant (P value <0.05). To examine direct relationships between delta13C(ER) and recent Gs, we used models relating isotope discrimination to stomatal conductance and photosynthetic capacity at the leaf level to estimate values of stomatal conductance ("Gs-I") that would be expected if respired CO2 were derived entirely from recent photosynthate. We compared these values with estimates of Gs using direct measurement of transpiration at multiple locations in the watershed. Considering that the approach based on isotopes considers only the effect of photosynthetic discrimination on delta13C(ER), the magnitude and range in the two values were surprisingly similar. We conclude that: (1) delta13C(ER) is sensitive to variations in weather, and (2) delta13C(ER) potentially could be used to directly monitor average, basin-wide variations in Gs in complex terrain if further research improves understanding of how delta13C(ER) is influenced by post-assimilation fractionation processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号