全文获取类型
收费全文 | 211篇 |
免费 | 31篇 |
专业分类
242篇 |
出版年
2023年 | 2篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 5篇 |
2015年 | 5篇 |
2014年 | 5篇 |
2013年 | 9篇 |
2012年 | 7篇 |
2011年 | 9篇 |
2010年 | 11篇 |
2009年 | 11篇 |
2008年 | 13篇 |
2007年 | 11篇 |
2006年 | 5篇 |
2005年 | 9篇 |
2004年 | 6篇 |
2003年 | 5篇 |
2002年 | 11篇 |
2001年 | 6篇 |
2000年 | 11篇 |
1999年 | 11篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 5篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1979年 | 2篇 |
1978年 | 4篇 |
1975年 | 2篇 |
1974年 | 3篇 |
1971年 | 2篇 |
1970年 | 4篇 |
1969年 | 1篇 |
1968年 | 4篇 |
1967年 | 6篇 |
1966年 | 2篇 |
1965年 | 3篇 |
1960年 | 2篇 |
1957年 | 2篇 |
1942年 | 1篇 |
1941年 | 1篇 |
1939年 | 1篇 |
1906年 | 1篇 |
排序方式: 共有242条查询结果,搜索用时 15 毫秒
41.
42.
43.
44.
Abhinav Kumar Sabine M?cklinghoff Fumiaki Yumoto Lukasz Jaroszewski Carol L. Farr Anna Grzechnik Phuong Nguyen Christian X. Weichenberger Hsiu-Ju Chiu Heath E. Klock Marc-André Elsliger Ashley M. Deacon Adam Godzik Scott A. Lesley Bruce R. Conklin Robert J. Fletterick Ian A. Wilson 《PloS one》2012,7(9)
45.
Survival and recurrence rates in breast cancer are variable for common diagnoses, and therefore the biological underpinnings of the disease that determine those outcomes are yet to be fully understood. As a result, translational medicine is one of the fastest growing arenas of study in tumor biology. With advancements in genetic and imaging techniques, archived biopsies can be examined for purposes other than diagnosis. There is a great deal of evidence that points to the stroma as the major regulator of tumor progression following the initial stages of tumor formation, and the stroma may also contribute to risk factors determining tumor formation. Therefore, aspects of stromal biology are well-suited to be a focus for studies of patient outcome, where statistical differences in survival among patients provide evidence as to whether that stromal component is a signpost for tumor progression. In this review we summarize the latest research done where breast cancer patient survival was correlated with aspects of stromal biology, which have been put into four categories: reorganization of the extracellular matrix (ECM) to promote invasion, changes in the expression of stromal cell types, changes in stromal gene expression, and changes in cell biology signaling cascades to and from the stroma. 相似文献
46.
Zhang L Zambon AC Vranizan K Pothula K Conklin BR Insel PA 《The Journal of biological chemistry》2008,283(7):4304-4313
47.
G. Mattson E. Conklin S. Desai G. Nielander M. D. Savage S. Morgensen 《Molecular biology reports》1993,17(3):167-183
The various aspects of chemical crosslinking are addressed. Crosslinker reactivity, specificity, spacer arm length and solubility characteristics are detailed. Considerations for choosing one of these crosslinkers for a particular application are given as well as reaction conditions and practical tips for use of each category of crosslinkers.Abbreviations ABH
azidobenzoyl hydrazide
- ANB- NOS
N-5-azido-2-nitrobenzoyloxysuccinimide
- ASIB
1-(p-azidosalicylamido)-4-(iodoacetamido)butane
- ASBA
4-(p-azidosalicylamido)butylamine
- APDP
N-[4-(p-azidosalicylamido) butyl]-3(2-pyridyldithio)propionamide
- APG
p-azidophenyl glyoxal monohydrate
- BASED
bis-[-(4-azidosalicylamido)ethyl] disulfide
- BMH
bismaleimidohexane
- BS3
bis(sulfosuccinimidyl) suberate
- BSOCOES
bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone
- DCC
N,N-dicyclohexylcarbodiimide
- DFDNB
1,5-difluoro-2,4-dinitrobenzene
- DMA
dimethyl adipimidate·2HCl
- DMP
dimethyl pimelimidate·2HCl
- DMS
dimethyl suberimidate·2HCl
- DPDPB
1,4-di-(3,2-pyridyldithio)propionamido butane
- DMF
dimethylformamide
- DMSO
dimethylsulfoxide
- DSG
disuccinimidyl glutarate
- DSP
dithiobis(succinimidylpropionate)
- DSS
disuccinimidyl suberate
- DST
disuccinimidyl tartarate
- DTSSP
3,3-dithiobis (sulfosuccinimidylpropionate)
- DTBP
dimethyl 3,3-dithiobispropionimidate·2HCl
- EDC or EDAC
1-ethyl-3-(3-dimethylaminopropyl)carbodimide hydrochloride
- EDTA
ethylenediaminetetraacetic acid disodium salt, dihydrate
- EGS
ethylene glycolbis(succinimidylsuccinate)
- GMBS
N--maleimidobutyryloxysuccinimide ester
- HSAB
N-hydroxysuccinimidyl-4-azidobenzoate
- HEPES
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- MBS
m-maleimidobenzoyl-N-hydroxysuccinimide ester
- MES
4-morpholineethanesulfonic acid
- NHS
N-hydroxysuccinimide
- NHS-ASA
N-hydroxysuccinimidyl-4-azidosalicylic acid
- PMFS
phenylmethylsulfonyl fluoride
- PNP-DTP
p-nitrophenyl-2-diazo-3,3,3-trifluoropropionate
- SAED
sulfosuccinimidyl 2-(7-azido-4-methylcoumarin-3-acetamide) ethyl-1,3-dithiopropionate
- SADP
N-succinimdyl (4-azidophenyl)1,3-dithiopropionate
- SAND
sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3-dithiopropionate
- SANPAH
N-succinimidyl-6(4-azido-2-nitrophenyl-amino)hexanoate
- SASD
sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1,3-dithiopropionate
- SATA
N-succinimidyl-S-acetylthioacetate
- SDBP
N-hydroxysuccinimidyl-2,3-dibromopropionate
- SIAB
N-succinimidyl(4-iodoacetyl)aminobenzoate
- SMCC
succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate
- SMPB
succinimidyl 4-(p-maleimidophenyl) butyrate
- SMPT
4-succinimidyloxycarbonyl--methyl--(2-pyridyldithio)-toluene
- sulfo-BSOCOES
bis[2-sulfosuccinimidooxycarbonyloxy) ethyl]sulfone
- sulfo-DST
disulfosuccinimidyl tartarate
- sulfo-EGS
ethylene glycolbis(sulfosuccinimidylsuccinate)
- sulfo-GMBS
N--maleimidobutyryloxysulfosuccinimide ester
- sulfo-MBS
m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester
- sulfo-SADP
sulfosuccinimidyl(4-azidophenyldithio)propionate
- sulfo-SAMCA
sulfosuccinimidyl 7-azido-4-methylcoumarin-3-acetate
- sulfo-SANPAH
sulfosuccinimidyl 6-(4-azido-2-nitrophenylamino)hexanoate
- sulfo-SIAB
sulfosuccinimidyl(4-iodoacetyl)aminobenzoate
- sulfo-SMPB
sulfo-succinimidyl 4-(p-maleimidophenyl)butyrate
- sulfo-SMCC
sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate
- SPDP
N-succinimidyl 3-(2-pyridyldithio)propionate 相似文献
48.
Since the 1960s, and possibly earlier, the macroalga Dictyosphaeria cavernosa has overgrown and displaced corals on reef slopes and outer reef flats in Kaneohe Bay, Oahu. This shift in reef community composition is generally attributed to nutrient enrichment resulting from sewage discharge. Following the diversion of most of the sewage effluent in 1977-1978, it was expected that D. cavernosa growth would become nutrient-limited and its abundance would consequently decline, but the alga remains abundant in much of the bay. One explanation for its persistence is that nutrients are once again high enough to support the alga's growth. An alternative explanation is that there has been a reduction in grazing intensity in the bay. In this study we resurveyed the distribution and abundance of D. cavernosa at 120 reef slope sites originally surveyed in 1969. We conducted additional surveys to estimate the biomass of herbivores and the areal coverage of D. cavernosa and other macroalgae on reef slopes and flats. Field experiments were used to determine spatial and temporal patterns of grazing intensity on and growth rates of D. cavernosa and the introduced macroalga Acanthophora spicifera. Laboratory experiments were used to examine preferences among herbivores for some of the most abundant macroalgae on Kaneohe Bay reefs. Twenty years after sewage diversion, D. cavernosa cover on reef slopes has decreased substantially in southern Kaneohe Bay, the site of most of the historical sewage discharge. D. cavernosa cover has changed less in other regions, remaining high in the central bay and low in the north bay. D. cavernosa thalli protected by grazer exclusion cages sustained positive growth rates on reef slopes and flats throughout the bay. Reduced nutrient concentrations may have caused a reduction in D. cavernosa growth rates, and a consequent reduction in D. cavernosa abundance in the south bay shortly after sewage diversion. Measurements of grazing intensity and surveys of herbivorous fish abundance suggest that the continued abundance of D. cavernosa is the result of a reduction in grazing intensity. Reduced grazing intensity on D. cavernosa may in turn be the result of a historical reduction in herbivore biomass or the establishment of several introduced macroalgae on reef flats. The introduced species are preferred by herbivorous fishes over D. cavernosa, as indicated by preference tests. The hypothesis that reduced grazing pressure on D. cavernosa is related to the establishment of introduced species is supported by the observation that D. cavernosa cover is highest on reef slopes where the cover of preferred introduced macroalgae on the adjacent outer reef flat is also high. Conversely, D. cavernosa cover is low or zero on reef slopes where the cover of introduced macroalgae on the adjacent reef flat is low or zero 相似文献
49.
B R Conklin O Chabre Y H Wong A D Federman H R Bourne 《The Journal of biological chemistry》1992,267(1):31-34
Gq mediates hormonal stimulation of phosphoinositide-specific phospholipase C (PI-PLC). We mutated the alpha subunit of Gq (alpha q) to replace arginine 183 with cysteine. Mutations that substitute cysteine for the corresponding arginine residues of alpha s and alpha i2 constitutively activate their respective effector pathways, creating the gsp and gip2 oncogenes. Transient expression of alpha q-R183C in COS-7 and HEK-293 cells constitutively activates PI-PLC, but wild type (WT) alpha q does not. This suggests that the mutated arginines in alpha s, alpha i2, and alpha q share a common function in regulating the active state of these proteins and that the alpha q gene may serve as a target for oncogenic mutations in human tumors. In an attempt to develop an assay for receptor stimulation of recombinant alpha q, we co-expressed receptors with alpha q-WT. We found that the alpha 2-adrenoceptor stimulates PI-PLC activation in HEK-293 cells in a fashion that depends completely on co-expression of alpha q-WT. These findings create an experimental model, similar to that provided for alpha s by S49 cyc- cells, that should make it possible to analyze receptor and effector coupling by mutant alpha q against a null background. 相似文献
50.
D Conklin C E Lofton-Day B A Haldeman A Ching T E Whitmore S Lok S Jaspers 《Genomics》1999,60(1):50-56
A new member of the insulin gene superfamily (INSL5) was identified by searching EST databases for the presence of the conserved insulin B-chain cysteine motif. Human and murine INSL5 are both polypeptides of 135 amino acids, matching the classical signature of the insulin superfamily. Through the B- and A-chain regions, human INSL5 has 48% identity to shark relaxin, 40% identity to human relaxin, and 34% identity to human Leydig insulin-like factor. Northern blot analysis detected expression of human INSL5 in rectal, colon, and uterine tissue and of murine INSL5 only in thymic tissue. Using quantitative RT-PCR, expression of murine INSL5 was detected in the highest quantity in colon followed by thymus, and minimal expression was seen in testis. By radiation hybrid mapping and the use of surrounding markers, human INSL5 maps to chromosome 1 in the 1p31.1 to 1p22.3 region. 相似文献