首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5652篇
  免费   427篇
  国内免费   373篇
  6452篇
  2024年   12篇
  2023年   66篇
  2022年   159篇
  2021年   288篇
  2020年   203篇
  2019年   234篇
  2018年   222篇
  2017年   186篇
  2016年   278篇
  2015年   356篇
  2014年   442篇
  2013年   453篇
  2012年   483篇
  2011年   428篇
  2010年   259篇
  2009年   224篇
  2008年   274篇
  2007年   232篇
  2006年   172篇
  2005年   130篇
  2004年   137篇
  2003年   124篇
  2002年   112篇
  2001年   98篇
  2000年   89篇
  1999年   92篇
  1998年   63篇
  1997年   61篇
  1996年   39篇
  1995年   51篇
  1994年   55篇
  1993年   53篇
  1992年   67篇
  1991年   48篇
  1990年   34篇
  1989年   29篇
  1988年   28篇
  1987年   16篇
  1986年   14篇
  1985年   22篇
  1984年   12篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   18篇
  1978年   8篇
  1976年   7篇
  1975年   5篇
  1972年   5篇
排序方式: 共有6452条查询结果,搜索用时 15 毫秒
101.
Notch signaling pathway, a highly conserved cell signaling system, exists in most multicellular organisms. The objective of this study was to examine Notch signaling pathway in germ cell cyst breakdown and primordial follicle formation. The receptor and ligand genes of Notch pathway (Notch1, Notch2, Jagged1, Jagged2 and Hes1) were extremely down-regulated after newborn mouse ovaries were cultured then exposed to DAPT or L-685,458 in vitro (P < 0.01). Since DAPT or L-685,548 inhibits Notch signaling pathway, the expression of protein LHX8 and NOBOX was significantly reduced during the formation of the primordial follicles. Down-regulated mRNA expression of specific genes including Lhx8, Figla, Sohlh2 and Nobox, were also observed. The percentages of female germ cells in germ cell cysts and primordial follicles were counted after culture of newborn ovaries for 3 days in vitro. The result showed female germ cells in cysts was remarkably up-regulated while as the oocytes in primordial follicles was significantly down-regulated (P < 0.05). In conclusion, Notch signaling pathway may regulate the formation of primordial follicle in mice.  相似文献   
102.
Gaucher disease (GD) is the most common form of sphingolipidosis and is caused by a defect of beta-glucosidase (beta-Glu). A carbohydrate mimic N-octyl-beta-valienamine (NOV) is an inhibitor of beta-Glu. When applied to cultured GD fibroblasts with F213I beta-Glu mutation, NOV increased the protein level of the mutant enzyme and up-regulated cellular enzyme activity. The maximum effect of NOV was observed in F213I homozygous cells in which NOV treatment at 30 microM for 4 days caused a approximately 6-fold increase in the enzyme activity, up to approximately 80% of the activity in control cells. NOV was not effective in cells with other beta-Glu mutations, N370S, L444P, 84CG and RecNciI. Immunofluorescence and cell fractionation showed localization of the F213I mutant enzyme in the lysosomes of NOV-treated cells. Consistent with this, NOV restored clearance of 14C-labeled glucosylceramide in F213I homozygous cells. F213I mutant beta-Glu rapidly lost its activity at neutral pH in vitro and this pH-dependent loss of activity was attenuated by NOV. These results suggest that NOV works as a chemical chaperone to accelerate transport and maturation of F213I mutant beta-Glu and may suggest a therapeutic value of this compound for GD.  相似文献   
103.
104.
The Tibetan grey wolf (Canis lupus chanco) occupies habitats on the Qinghai-Tibet Plateau, a high altitude (>3000 m) environment where low oxygen tension exerts unique selection pressure on individuals to adapt to hypoxic conditions. To identify genes involved in hypoxia adaptation, we generated complete genome sequences of nine Chinese wolves from high and low altitude populations at an average coverage of 25× coverage. We found that, beginning about 55,000 years ago, the highland Tibetan grey wolf suffered a more substantial population decline than lowland wolves. Positively selected hypoxia-related genes in highland wolves are enriched in the HIF signaling pathway (P = 1.57E-6), ATP binding (P = 5.62E-5), and response to an oxygen-containing compound (P≤5.30E-4). Of these positively selected hypoxia-related genes, three genes (EPAS1, ANGPT1, and RYR2) had at least one specific fixed non-synonymous SNP in highland wolves based on the nine genome data. Our re-sequencing studies on a large panel of individuals showed a frequency difference greater than 58% between highland and lowland wolves for these specific fixed non-synonymous SNPs and a high degree of LD surrounding the three genes, which imply strong selection. Past studies have shown that EPAS1 and ANGPT1 are important in the response to hypoxic stress, and RYR2 is involved in heart function. These three genes also exhibited significant signals of natural selection in high altitude human populations, which suggest similar evolutionary constraints on natural selection in wolves and humans of the Qinghai-Tibet Plateau.  相似文献   
105.
Madore E  Lipman RS  Hou YM  Lapointe J 《Biochemistry》2000,39(23):6791-6798
The conformation of a tRNA in its initial contact with its cognate aminoacyl-tRNA synthetase was investigated with the Escherichia coli glutamyl-tRNA synthetase-tRNA(Glu) complex. Covalent complexes between the periodate-oxidized tRNA(Glu) and its synthetase were obtained. These complexes are specific since none were formed with any other oxidized E. coli tRNA. The three major residues cross-linked to the 3'-terminal adenosine of oxidized tRNA(Glu) are Lys115, Arg209, and Arg48. Modeling of the tRNA(Glu)-glutamyl-tRNA synthetase based on the known crystal structures of Thermus thermophilus GluRS and of the E. coli tRNA(Gln)-glutaminyl-tRNA synthetase complex shows that these three residues are located in the pocket that binds the acceptor stem, and that Lys115, located in a 26 residue loop closed by coordination to a zinc atom in the tRNA acceptor stem-binding domain, is the first contact point of the 3'-terminal adenosine of tRNA(Glu). In our model, we assume that the 3'-terminal GCCA single-stranded segment of tRNA(Glu) is helical and extends the stacking of the acceptor stem. This assumption is supported by the fact that the 3' CCA sequence of tRNA(Glu) is not readily circularized in the presence of T4 RNA ligase under conditions where several other tRNAs are circularized. The two other cross-linked sites are interpreted as the contact sites of the 3'-terminal ribose on the enzyme during the unfolding and movement of the 3'-terminal GCCA segment to position the acceptor ribose in the catalytic site for aminoacylation.  相似文献   
106.
Chinese species in the genus Nycheuma Fennah, 1964a (Hemiptera: Fulgoromorpha: Delphacidae: Delphacinae: Delphacini) are revised to include three species: Nycheuma cognatum (Muir, 1917), Nycheuma dimorpha (Matsumura, 1910) and Nycheuma nilotica Linnavuori, 1973. Nycheuma coctum Yang, 1989 is placed in synonymy with Nycheuma nilotica Linnavuori, 1973. Nycheuma dimorpha (Matsumura, 1910) is newly recorded from China. The generic characteristics are redefined. The main morphological characters, male genitalia of 3 species are described or redescribed and illustrated. A key to Chinese species in the genus is provided.  相似文献   
107.
The synthesis and structure-activity relationship of a series of 7-azaindole piperidine derivatives are described. SAR studies led to the discovery of the potent CCR2 antagonists displaying IC(50) values in the nanomolar range. The representative compound 15 showed reasonable P450 and pharmacokinetics profile.  相似文献   
108.
普通小麦:华山新麦草异代换系的选育及细胞遗传学研究   总被引:17,自引:5,他引:17  
利用缺体小麦-华山新麦草七倍体杂种(2n=49,AABBDDN)杂交,F1再瑟相应的缺体小麦回交2次,在BC2F1镜检选出2n=41的植株,同时套代自交,选育出5A和3D两种异代换系。单体找换植侏自交产生二体代换植侏的频率为23.16%。5A代换植侏在减数分裂中期Ⅰ21Ⅱ的出现频率平均为84.52%,3D代换植侏21Ⅱ的出现频率平均为62.61%。异代换系均生长旺盛,结实正常,说明异染色体能较好地  相似文献   
109.
Liu  Miao  Li  Siqi  Xie  Yongzhen  Jia  Shiru  Hou  Ying  Zou  Yang  Zhong  Cheng 《Applied microbiology and biotechnology》2018,102(3):1155-1165
Applied Microbiology and Biotechnology - Oxygen plays a key role during bacterial cellulose (BC) biosynthesis by Gluconacetobacter xylinus. In this study, the Vitreoscilla hemoglobin (VHb)-encoding...  相似文献   
110.
Ribosomal S6 kinase 1 (S6K1), as a key regulator of mRNA translation, plays an important role in cell cycle progression through the G(1) phase of proliferating cells and in the synaptic plasticity of terminally differentiated neurons. Activation of S6K1 involves the phosphorylation of its multiple Ser/Thr residues, including the proline-directed sites (Ser-411, Ser-418, Thr-421, and Ser-424) in the autoinhibitory domain near the C terminus. Phosphorylation at Thr-389 is also a crucial event in S6K1 activation. Here, we report that S6K1 phosphorylation at Ser-411 is required for the rapamycin-sensitive phosphorylation of Thr-389 and the subsequent activation of S6K1. Mutation of Ser-411 to Ala ablated insulin-induced Thr-389 phosphorylation and S6K1 activation, whereas mutation mimicking Ser-411 phosphorylation did not show any effect. Furthermore, phosphomimetic mutation of Thr-389 overcame the inhibitory effect of the mutation S411A. Thus, Ser-411 phosphorylation regulates S6K1 activation via the control of Thr-389 phosphorylation. In nervous system neurons, Cdk5-p35 kinase associates with S6K1 via the direct interaction between p35 and S6K1 and catalyzes S6K1 phosphorylation specifically at Ser-411. Inhibition of the Cdk5 activity or suppression of Cdk5 expression blocked S6K1 phosphorylation at Ser-411 and Thr-389, resulting in S6K1 inactivation. Similar results were obtained by treating asynchronous populations of proliferating cells with the CDK inhibitor compound roscovitine. Altogether, our findings suggest a novel mechanism by which the CDK-mediated phosphorylation regulates the activation of S6K1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号