首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
41.
Brain cell-free extract greatly stimulates the polymerization rate of purified tubulin with a reduction of the nucleation period and without a significant alteration of the final assembly state. This effect is mimicked by neuroblastoma extract at 10-fold lower extract concentration, but not by excess muscle extract. Copper inhibits microtubule assembly in vitro but in the presence of brain extract the copper effect is suspended. Electron microscopic images showed that intact microtubules are formed and decorated by cytosolic proteins in the absence and presence of copper, while the copper alone induces the formation of S-shaped sheets and oligomeric threads. The flux of triosephosphate formation from glucose is enhanced by microtubules in brain extract, but not in muscle extract. Copper inhibits the glycolytic flux; however, the presence of microtubules not only suspends the inhibition by copper but the activation of glycolysis by microtubules is also preserved. We conclude that the organization of neuronal proteins modifies both the rates of microtubule assembly and glycolysis, and reduces their sensitivities against the inhibition caused by copper.  相似文献   
42.
43.
Insulin-like growth factor-I (IGF-I) and non-esterified fatty acids (NEFA) play an essential role in fetal growth and development. To date, fetal fluids IGF-I and NEFA levels at term canine pregnancy are unknown and could be related to the neonatal development and breed size. For these reasons, the aims of the present study were as follows: (1) to evaluate IGF-I and NEFA concentrations in fetal fluids collected from normally developed and viable newborn puppies born at term of normal pregnancies; (2) to assess possible differences between IGF-I and NEFA levels in amniotic compared with allantoic fluid; (3) to detect possible relationship between breed body size and IGF-I and NEFA amniotic and allantoic concentrations; (4) to evaluate possible differences in IGF-I fetal fluids levels between male and female puppies; and (5) to assess possible correlations between the two hormones in each type of fluid. The study enrolled 25 pure breed bitches submitted to elective Cesarean section at term because of the high risk of dystocia or previous troubles at parturition. At surgery, amniotic and allantoic fluids were collected and assayed for IGF-I and NEFA. IGF-I and NEFA amounts in both amniotic and allantoic fluids of different breed size bitches (small: ≤10 kg; medium: 11–25 kg; large: 26–40 kg) were detected, as well as the effect of gender on IGF-I levels. On a total of 73 amniotic and 76 allantoic samples collected by normal, viable, and mature newborns, the mean IGF-I concentration was significantly higher in amniotic than in allantoic fluid in all three groups, but the amniotic IGF-I levels were significantly lower in small and medium size bitches when compared with large ones. No significant differences were found in allantoic IGF-I concentrations among size groups. A significant effect of the puppy gender on IGF-I content in both fetal fluids was not reported. Regarding NEFA, in all the three groups, the mean NEFA concentration did not significantly differ between amnion and allantois, but in both fetal fluids, higher NEFA levels were detected in samples belonging to small breeds when compared with medium and large. These data strongly indicated that, also in the dog, a relation between fetal fluids IGF-I and NEFA concentrations and breed size exists. Further research is needed to elucidate the possible role of IGF-I and NEFA in the pathologic conditions related to canine fetal growth.  相似文献   
44.
Previous studies in rats have suggested that the urinary excretion of unconjugated bilirubin (UB) comprises only a small fraction of the pigment that reaches the tubular lumen by glomerular filtration and escapes from tubular cell reabsorption. However, additional data also indicated that UB interacts with renal peritubular cell membranes impairing the secretion of p-aminohippurate (PAH). In this study we examined the possibility of a secretory step which could also be involved in the renal excretory mechanism for UB. An isolated rat kidney preparation was used, and the uptake of UB by renal tissue, the UB appearance in the urine, and the secretion of PAH were analyzed throughout the perfusion. The results indicated that the UB urinary excretion rate changed independently of UB filtered load. The latter remained almost unchanged during the perfusion, whereas the excretion rate of UB and the UB-to-creatinine (Cr) clearance ratio increased significantly. Furthermore, a relationship between the uptake of UB by the kidney, the UB-to-Cr clearance ratio, and the decrease in PAH secretion rate, was proved. In addition, when probenecid was added to the perfusate solution the cumulative uptake of UB by the kidney and the rate of excretion of UB in the urine were diminished. We conclude that the mechanism of UB excretion by the kidney may be considered as the result of a process involving glomerular filtration plus tubular secretion followed by a back diffusion step from the lumen in a similar way to other endogenous compounds, thus explaining the virtual absence of UB from the normal urine.  相似文献   
45.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号