首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   17篇
  2022年   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2016年   2篇
  2015年   6篇
  2014年   9篇
  2013年   5篇
  2012年   14篇
  2011年   14篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   20篇
  2006年   10篇
  2005年   12篇
  2004年   11篇
  2003年   8篇
  2002年   9篇
  2001年   13篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1986年   7篇
  1983年   3篇
  1982年   3篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1968年   2篇
  1966年   1篇
  1965年   1篇
  1961年   1篇
  1954年   1篇
  1953年   1篇
  1952年   1篇
  1951年   1篇
  1937年   2篇
  1936年   1篇
排序方式: 共有239条查询结果,搜索用时 31 毫秒
11.
We have characterized a series of nonsteroidal progesterone receptor ligands, the tetrahydropyridazines. Compounds in this series, exemplified by RWJ 26819, demonstrate high affinity and unprecedented specificity for the progesterone receptor relative to other steroid hormone receptors. Like steroidal progestins, RWJ 26819 induces binding of the receptor to a progesterone response element in vitro, and stimulates gene expression in and proliferation of T47D human breast cancer cells. When administered to rabbits orally or subcutaneously, the compound induces histological changes in the uterine lining comparable to those induced by levonorgestrel. It also inhibits ovulation in monkeys. Though less potent in cells and in animal models than would be predicted from binding affinity alone, their enhanced selectivity suggests that they could be effectively used in a clinical setting. Most of the tetrahydropyridazines synthesized are progestin agonists or mixed agonists and antagonists in vitro; however, one compound with antagonist activity in the rabbit uterine transformation assay has been identified.  相似文献   
12.
The ability of two strains of Lactobacillus acidophilus, CRL 640 and CRL 800, to survive and retain their biological activities under frozen storage was determined. Freezing and thawing, as well as frozen storage, damaged the cell membrane, rendering the microorganisms sensitive to sodium chloride and bile salts. Both lactic acid production and proteolytic activity were depressed after 21 days at -20 degreesC, whereas beta-galactosidase activity per cell unit was increased. Cell injury was partially overcome after repair in a salt-rich medium. Copyright 1998 Academic Press.  相似文献   
13.
The potential role of foliar carbon export features in the acclimation of photosynthetic capacity to differences and changes in light environment was evaluated. These features included apoplastic vs. symplastic phloem loading, density of loading veins, plasmodesmatal frequency in intermediary cells, and the ratio of loading cells to sieve elements. In initial studies, three apoplastic loaders (spinach, pea, Arabidopsis thaliana) exhibited a completely flexible photosynthetic response to changing light conditions, while two symplastic loaders (pumpkin, Verbascum phoeniceum), although able to adjust to different long-term growth conditions, were more limited in their response when transferred from low (LL) to high (HL) light. This suggested that constraints imposed by the completely physical pathway of sugar export might act as a bottleneck in the export of carbon from LL-acclimated leaves of symplastic loaders. While both symplastic loaders exhibited variable loading vein densities (low in LL and high in HL), none of the three apoplastic loaders initially characterized exhibited such differences. However, an additional apoplastic species (tomato) exhibited similar differences in vein density during continuous growth in different light environments. Furthermore, in contrast to the other apoplastic loaders, photosynthetic acclimation in tomato was not complete following a transfer from LL to HL. This suggests that loading vein density and loading cells per sieve element, and thus apparent loading surface capacity, play a major role in the potential for photosynthetic acclimation to changes in light environment. Photosynthetic acclimation and vein density acclimation were also characterized in the slow-growing, sclerophytic evergreen Monstera deliciosa. This evergreen possessed a lower vein density during growth in LL compared to HL and exhibited a more severely limited potential for photosynthetic acclimation to increases in light environment than the rapidly-growing, mesophytic annuals.  相似文献   
14.
Clostridium thermocellum, a cellulolytic, thermophilic anaerobe, has potential for commercial exploitation in converting fibrous biomass to ethanol. However, ethanol concentrations above 1% (w/v) are inhibitory to growth and fermentation, and this limits industrial application of the organism. Recent work with ethanol-adapted strains suggested that protein changes occurred during ethanol adaptation, particularly in the membrane proteome. A two-stage Bicine-doubled sodium dodecyl sulfate-polyacrylamide gel electrophoresis protocol was designed to separate membrane proteins and circumvent problems associated with membrane protein analysis using traditional gel-based proteomics approaches. Wild-type and ethanol-adapted C. thermocellum membranes displayed similar spot diversity and approximately 60% of proteins identified from purified membrane fractions were observed to be differentially expressed in the two strains. A majority (73%) of differentially expressed proteins were down-regulated in the ethanol-adapted strain. Based on putative identifications, a significant proportion of these down-regulated proteins were involved with carbohydrate transport and metabolism. Approximately one-third of the up-regulated proteins in the ethanol-adapted species were associated with chemotaxis and signal transduction. Overall, the results suggested that membrane-associated proteins in the ethanol-adapted strain are either being synthesized in lower quantities or not properly incorporated into the cell membrane.  相似文献   
15.
Glucose metabolism is altered in long-lived people and mice. Although it is clear that there is an association between altered glucose metabolism and longevity, it is not known whether this link is causal or not. Our current hypothesis is that decreased fasting glucose utilization may increase longevity by reducing oxygen radical production, a potential cause of aging. We observed that whole body fasting glucose utilization was lower in the Snell dwarf, a long-lived mutant mouse. Whole body fasting glucose utilization may be reduced by a decrease in the production of circulating glucose. Our isotope labeling analysis indicated both gluconeogenesis and glycogenolysis were suppressed in Snell dwarfs. Elevated circulating adiponectin may contribute to the reduction of glucose production in Snell dwarfs. Adiponectin lowered the appearance of glucose in the media over hepatoma cells by suppressing gluconeogenesis and glycogenolysis. The suppression of glucose production by adiponectin in vitro depended on AMP-activated protein kinase, a cell mediator of fatty acid oxidation. Elevated fatty acid oxidation was indicated in Snell dwarfs by increased utilization of circulating oleic acid, reduced intracellular triglyceride content, and increased phosphorylation of acetyl-CoA carboxylase. Finally, protein carbonyl content, a marker of oxygen radical damage, was decreased in Snell dwarfs. The correlation between high glucose utilization and elevated oxygen radical production was also observed in vitro by altering the concentrations of glucose and fatty acids in the media or pharmacologic inhibition of glucose and fatty acid oxidation with 4-hydroxycyanocinnamic acid and etomoxir, respectively.  相似文献   
16.
A series of 2,4,5-tri-substituted imidazoles has proven to be highly potent in inhibiting mammalian 15-lipoxygenase (15-LO) with excellent selectivity over human isozymes 5- and P-12-LO. Non-symmetrical sulfamides (e.g., 21a-n) were found to be suitable replacements for the earlier arylsulfonamide-containing members of this series (e.g., 2, 14a-p). Several members of these series also demonstrated potent inhibition of human 15-LO in a cell-based assay.  相似文献   
17.
18.

Background  

β-catenin is an essential mediator of canonical Wnt signaling and a central component of the cadherin-catenin epithelial adhesion complex. Dysregulation of β-catenin expression has been described in pancreatic neoplasia. Newly published studies have suggested that β-catenin is critical for normal pancreatic development although these reports reached somewhat different conclusions. In addition, the molecular mechanisms by which loss of β-catenin affects pancreas development are not well understood. The goals of this study then were; 1] to further investigate the role of β-catenin in pancreatic development using a conditional knockout approach and 2] to identify possible mechanisms by which loss of β-catenin disrupts pancreatic development. A Pdx1-cre mouse line was used to delete a floxed β-catenin allele specifically in the developing pancreas, and embryonic pancreata were studied by immunohistochemistry and microarray analysis.  相似文献   
19.
Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.  相似文献   
20.
Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons and a substantial decrease in the neurotransmitter dopamine in the nigro-striatal region of the brain. Increased markers of oxidative stress, activated microglias and elevated levels of pro-inflammatory cytokines have been identified in the brains of patients with PD. Although the precise mechanism of loss of neurons in PD remains unclear, these findings suggest that microglial activation may contribute directly to loss of dopaminergic neurons in PD patients. In the present study, we tested the hypothesis that activated microglia induces nitric oxide-dependent oxidative stress which subsequently causes death of dopaminergic neuronal cells in culture. We employed lipopolysaccharide (LPS) stimulated mouse macrophage cells (RAW 264.7) as a reactive microglial model and SH-SY5Y cells as a model for human dopaminergic neurons. LPS stimulation of macrophages led to increased production of nitric oxide in a time and dose dependent manner as well as subsequent generation of other reactive nitrogen species such as peroxynitrite anions. In co-culture conditions, reactive macrophages stimulated SH-SY5Y cell death characterized by increased peroxynitrite concentrations and nitration of alpha-synuclein within SH-SY5Y cells. Importantly 1400W, an inhibitor of the inducible nitric oxide synthase provided protection from cell death via decreasing the levels of nitrated alpha-synuclein. These results suggest that reactive microglias could induce oxidative stress in dopaminergic neurons and such oxidative stress may finally lead to nitration of alpha-synuclein and death of dopaminergic neurons in PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号