首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   12篇
  2018年   2篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   10篇
  2011年   5篇
  2010年   7篇
  2009年   4篇
  2008年   17篇
  2007年   9篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   9篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1974年   5篇
  1973年   3篇
  1936年   1篇
  1928年   1篇
  1927年   1篇
  1922年   2篇
  1918年   2篇
  1916年   1篇
  1915年   1篇
排序方式: 共有185条查询结果,搜索用时 31 毫秒
101.
The location of calmodulin in the pea plasma membrane   总被引:8,自引:0,他引:8  
Plasma membrane has been prepared from pea seedlings in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA). Calmodulin has been detected in these plasma membrane preparations using calcium overlay techniques, immunoblots, quantitation with antibodies raised against spinach calmodulin, phosphodiesterase activation, mobility shift, and heat stability. EGTA-stable calmodulin represents 0.5-1% of the total plasma membrane protein, and it is the only detectable calcium-binding protein in plasma membrane isolated under these conditions. The anti-spinach calmodulin reacts only with the N-terminal region of spinach calmodulin representing residues 1-106. The positioning of EGTA-stable calmodulin in the plasma membrane has been probed with trypsin and anti-spinach calmodulin. The data suggest that the calmodulin N-terminal region representing residues 1-106 projects from the membrane and could be available for binding other proteins. Calcium-dependent calmodulin binding to the plasma membrane has also been detected. Calcium-dependent calmodulin-binding proteins have been characterized using calmodulin overlay methods. The exposure of calmodulin-binding domains of most of these proteins from the plasma membrane is further suggested by their reaction with azidoiodinated calmodulin.  相似文献   
102.
Prions, the causative agents of Creutzfeldt-Jacob Disease (CJD) in humans and bovine spongiform encephalopathy (BSE) and scrapie in animals, are principally composed of PrPSc, a conformational isomer of cellular prion protein (PrPC). The propensity of PrPC to adopt alternative folds suggests that there may be an unusually high proportion of alternative conformations in dynamic equilibrium with the native state. However, the rates of hydrogen/deuterium exchange demonstrate that the conformation of human PrPC is not abnormally plastic. The stable core of PrPC has extensive contributions from all three alpha-helices and shows protection factors equal to the equilibrium constant for the major unfolding transition. A residual, hyper-stable region is retained upon unfolding, and exchange analysis identifies this as a small nucleus of approximately 10 residues around the disulfide bond. These results show that the most likely route for the conversion of PrPC to PrPSc is through a highly unfolded state that retains, at most, only this small nucleus of structure, rather than through a highly organized folding intermediate.  相似文献   
103.
104.
105.
Sylvatic plague (Yersinia pestis) is an exotic pathogen that is highly virulent in black-tailed prairie dogs (Cynomys ludovicianus) and causes widespread colony losses and individual mortality rates >95%. We investigated colony spatial characteristics that may influence inter-colony transmission of plague at 3 prairie dog colony complexes in the Great Plains. The 4 spatial characteristics we considered include: colony size, Euclidean distance to nearest neighboring colony, colony proximity index, and distance to nearest drainage (dispersal) corridor. We used multi-state mark–recapture models to determine the relationship between these colony characteristics and probability of plague transmission among prairie dog colonies. Annual mapping of colonies and mark–recapture analyses of disease dynamics in natural colonies led to 4 main results: 1) plague outbreaks exhibited high spatial and temporal variation, 2) the site of initiation of epizootic plague may have substantially influenced the subsequent inter-colony spread of plague, 3) the long-term effect of plague on individual colonies differed among sites because of how individuals and colonies were distributed, and 4) colony spatial characteristics were related to the probability of infection at all sites although the relative importance and direction of relationships varied among sites. Our findings suggest that conventional prairie dog conservation management strategies, including promoting large, highly connected colonies, may need to be altered in the presence of plague. © 2011 The Wildlife Society  相似文献   
106.
107.
108.
Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease.  相似文献   
109.
According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic'' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.  相似文献   
110.
Hexanucleotide repeat expansions in C9orf72 are a major cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Understanding the disease mechanisms and a method for clinical diagnostic genotyping have been hindered because of the difficulty in estimating the expansion size. We found 96 repeat-primed PCR expansions: 85/2,974 in six neurodegenerative diseases cohorts (FTLD, ALS, Alzheimer disease, sporadic Creutzfeldt-Jakob disease, Huntington disease-like syndrome, and other nonspecific neurodegenerative disease syndromes) and 11/7,579 (0.15%) in UK 1958 birth cohort (58BC) controls. With the use of a modified Southern blot method, the estimated expansion range (smear maxima) in cases was 800–4,400. Similarly, large expansions were detected in the population controls. Differences in expansion size and morphology were detected between DNA samples from tissue and cell lines. Of those in whom repeat-primed PCR detected expansions, 68/69 were confirmed by blotting, which was specific for greater than 275 repeats. We found that morphology in the expansion smear varied among different individuals and among different brain regions in the same individual. Expansion size correlated with age at clinical onset but did not differ between diagnostic groups. Evidence of instability of repeat size in control families, as well as neighboring SNP and microsatellite analyses, support multiple expansion events on the same haplotype background. Our method of estimating the size of large expansions has potential clinical utility. C9orf72-related disease might mimic several neurodegenerative disorders and, with potentially 90,000 carriers in the United Kingdom, is more common than previously realized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号