首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   15篇
  2023年   1篇
  2021年   6篇
  2020年   9篇
  2019年   9篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   6篇
  2013年   14篇
  2012年   11篇
  2011年   14篇
  2010年   7篇
  2009年   15篇
  2008年   12篇
  2007年   23篇
  2006年   8篇
  2005年   10篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   11篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有229条查询结果,搜索用时 15 毫秒
91.
Nitric oxide (NO) participates in the cell death induced by d-Galactosamine (d-GalN) in hepatocytes, and NO-derived reactive oxygen intermediates are critical contributors to protein modification and hepatocellular injury. It is anticipated that S-nitrosation of proteins will participate in the mechanisms leading to cell death in d-GalN-treated human hepatocytes. In the present study, d-GalN-induced cell death was related to augmented levels of NO production and S-nitrosothiol (SNO) content. The biotin switch assay confirmed that d-GalN increased the levels of S-nitrosated proteins in human hepatocytes. S-nitrosocysteine (CSNO) enhanced protein S-nitrosation and altered cell death parameters that were related to S-nitrosation of the executioner caspase-3. Fifteen S-nitrosated proteins participating in metabolism, antioxidative defense and cellular homeostasis were identified in human hepatocytes treated with CSNO. Among them, seven were also identified in d-GalN-treated hepatocytes. The results here reported underline the importance of the alteration of SNO homeostasis during d-GalN-induced cell death in human hepatocytes.  相似文献   
92.
Clostridium perfringens phospholipase C (CpPLC), also called α-toxin, is the main virulence factor for gas gangrene in humans. The lipase activity serves the bacterium to generate lipid signals in the host eukaryotic cell, and ultimately to degrade the host cell membranes. Several previous reports indicated that CpPLC was specific for phosphatidylcholine and sphingomyelin. Molecular docking studies described in this paper predict favorable interactions of the CpPLC active site with other phospholipids, e.g. phosphatidylethanolamine, phosphatidylinositol and, to a lesser extent, phosphatidylglycerol. On the basis of these predictions, we have performed experimental studies showing α-toxin to degrade all the phospholipids mentioned above. The molecular docking data also provide an explanation for the observed lower activity of CpPCL on sphingomyelin as compared to the glycerophospholipids.  相似文献   
93.
Nineteen bacteria isolates recovered from shellfish samples (mussels and oysters) showed a new and specific 16S rDNA-RFLP pattern with an Arcobacter identification method designed to recognize all species described up to 2008. These results suggested that they could belong to a new species. ERIC-PCR revealed that the 19 isolates belonged to 3 different strains. The sequence of the 16S rRNA gene of a representative strain (F98-3T) showed 97.6% similarity with the closest species Arcobacter marinus followed by Arcobacter halophilus (95.6%) and Arcobacter mytili (94.7%). The phylogenetic analysis with the16S rRNA, rpoB, gyrB and hsp60 genes placed the shellfish strains within the same cluster as the three species mentioned (also isolated from saline habitats) but they formed an independent phylogenetic line. The DDH results between strain F98-3T and A. marinus (54.8% ± 1.05), confirmed that it represents a new species. Several biochemical tests differentiated the shellfish isolates from all other Arcobacter species. Although the new species was different from A. mytili, they shared not only the same habitat (mussels) but also the characteristic of being so far the only Arcobacter species that are simultaneously negative for urea and indoxyl acetate hydrolysis. All results supported the classification of the shellfish strains as a new species, for which the name Arcobacter molluscorum sp. nov. with the type strain F98-3T is proposed (=CECT 7696T = LMG 25693T).  相似文献   
94.
Phytophthora spp. is one of the phytopathogenic Oomycete responsible for many important crop losses. Relevant species are P. infestans (causing potato late blight) and P. capsici (causing blight in pepper). In recent years, the use of conventional fungicides has favoured the appearance of different resistant strains. This study analyses the effect of various compounds on these two Phytophthora species. Those compounds were designed on the basis of known structures of natural compounds to obtain a rational control of these fungal‐like species. All the analysed products showed a fungistatic activity against both strains, one of them reduced mycelial growth by over 46% at 100 p.p.m.  相似文献   
95.
96.
SIRT1, the closest mammalian homolog of yeast Sir2, is an NAD+-dependent deacetylase with relevant functions in cancer, aging, and metabolism among other processes. SIRT1 has a diffuse nuclear localization but is recruited to the PML nuclear bodies (PML-NBs) after PML upregulation. However, the functions of SIRT1 in the PML-NBs are unknown. In this study we show that primary mouse embryo fibroblasts lacking SIRT1 contain reduced PML protein levels that are increased after reintroduction of SIRT1. In addition, overexpression of SIRT1 in HEK-293 cells increases the amount of PML protein whereas knockdown of SIRT1 reduces the size and number of PML-NBs and the levels of PML protein in HeLa cells. SIRT1 stimulates PML sumoylation in vitro and in vivo in a deacetylase-independent manner. Importantly, the absence of SIRT1 reduces the apoptotic response of vesicular stomatitis virus-infected cells and favors the extent of this PML-sensitive virus replication. These results show a novel function of SIRT1 in the control of PML and PML-NBs.  相似文献   
97.
Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A(2) and prostaglandin (PG)F(2α). Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the "cytokine storm" during acute infection. We conclude that ASA, through both COX inhibition and other "off-target" effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection.  相似文献   
98.
Polyamines play a critical role in the development of intestinal and immune systems during the infant breastfeeding period, but the effect of polyamines on the microbiota has not been reported. The aim of our study was to characterize the impact on the colonization pattern in neonatal BALB/cOlaHsd mice after supplementing an infant formula (IF) with a mixture of putrescine (PUT), spermidine (SPD) and spermine (SPM). A total of 48 pups (14 days old) were randomly assigned to 4-day intervention groups as follows: breast-fed (unweaned) pups (n=12); weaned pups (n=12) fed an infant formula (IF); weaned pups (n=12) fed an IF enriched with a low concentration of PUT, SPD and SPM (2.10, 22.05 and 38.00 μg/day, respectively); and weaned pups (n=12) fed with IF enriched with a high concentration of PUT, SPD and SPM (8.40, 88.20 and 152.00 μg/day, respectively) of polyamines in accordance with normal proportions found in human milk. Microbiota composition was analyzed by fluorescent in situ hybridization (FISH) with flow cytometry detection. Microbiota changes in formula-fed mice were significantly greater following supplementation with polyamines (P<.01). Bifidobacterium group bacteria, Akkermansia-like bacteria and LactobacillusEnterococcus group levels were higher in the groups fed infant formula supplemented with polyamines, resulting in even higher numbers of bacteria than in the breastfed pups. Our findings indicate that infant formulas enriched with polyamines may interact with gut microbiota, suggesting that further studies in human infants are required to assess the impact of polyamines on both growth and microbiota levels.  相似文献   
99.
A group of ten Arcobacter isolates (Gram negative, slightly curved motile rods, oxidase positive) was recovered from mussels (nine) and from clams (one). These isolates could not be assigned to any known species using the molecular identification methods specific for this genus (16S rDNA-RFLP and m-PCR). The aim of this study is to establish the taxonomic position of these isolates. The 16S rRNA gene sequence similarity of mussel strain F4(T) to the type strains of all other Arcobacter species ranged from 91.1% to 94.8%. The species most similar to the clams' strain F67-11(T) were Arcobacter defluvii (CECT 7697(T), 97.1%) and Arcobacter ellisii (CECT 7837(T), 97.0%). On the basis of phylogenetic analyses with 16S rRNA, rpoB, gyrB and hsp60 genes, the mussel and clam strains formed two different, new lineages within the genus Arcobacter. These data, together with their different phenotypic characteristics and MALDI-TOF mass spectra, revealed that these strains represent two new species, for which the names Arcobacter bivalviorum (type strain F4(T)=CECT 7835(T)=LMG 26154(T)) and Arcobacter venerupis (type strain F67-11(T)=CECT 7836(T)=LMG 26156(T)) are proposed.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号