首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6681篇
  免费   567篇
  国内免费   6篇
  7254篇
  2023年   37篇
  2022年   59篇
  2021年   97篇
  2020年   72篇
  2019年   114篇
  2018年   112篇
  2017年   83篇
  2016年   158篇
  2015年   287篇
  2014年   304篇
  2013年   353篇
  2012年   471篇
  2011年   443篇
  2010年   294篇
  2009年   292篇
  2008年   405篇
  2007年   381篇
  2006年   357篇
  2005年   329篇
  2004年   331篇
  2003年   333篇
  2002年   250篇
  2001年   95篇
  2000年   79篇
  1999年   107篇
  1998年   101篇
  1997年   70篇
  1996年   59篇
  1995年   78篇
  1994年   64篇
  1993年   59篇
  1992年   66篇
  1991年   70篇
  1990年   66篇
  1989年   56篇
  1988年   56篇
  1987年   43篇
  1986年   45篇
  1985年   36篇
  1984年   46篇
  1983年   40篇
  1982年   45篇
  1981年   40篇
  1980年   29篇
  1979年   32篇
  1978年   23篇
  1977年   30篇
  1975年   20篇
  1974年   34篇
  1973年   19篇
排序方式: 共有7254条查询结果,搜索用时 0 毫秒
131.
BACKGROUND: Phagocytosis of cells undergoing apoptosis is essential during development, cellular turnover, and wound healing. Failure to promptly clear apoptotic cells has been linked to autoimmune disorders. C. elegans CED-12 and mammalian ELMO are evolutionarily conserved scaffolding proteins that play a critical role in engulfment from worm to human. ELMO functions together with Dock180 (a guanine nucleotide exchange factor for Rac) to mediate Rac-dependent cytoskeletal reorganization during engulfment and cell migration. However, the components upstream of ELMO and Dock180 during engulfment remain elusive. RESULTS: Here, we define a conserved signaling module involving the small GTPase RhoG and its exchange factor TRIO, which functions upstream of ELMO/Dock180/Rac during engulfment. Complementary studies in C. elegans show that MIG-2 (which we identify as the homolog of mammalian RhoG) and UNC-73 (the TRIO homolog) also regulate corpse clearance in vivo, upstream of CED-12. At the molecular level, we identify a novel set of evolutionarily conserved Armadillo (ARM) repeats within CED-12/ELMO that mediate an interaction with activated MIG-2/RhoG; this, in turn, promotes Dock180-mediated Rac activation and cytoskeletal reorganization. CONCLUSIONS: The combination of in vitro and in vivo studies presented here identify two evolutionarily conserved players in engulfment, TRIO/UNC73 and RhoG/MIG-2, and the TRIO --> RhoG signaling module is linked by ELMO/CED-12 to Dock180-dependent Rac activation during engulfment. This work also identifies ARM repeats within CED-12/ELMO and their role in linking RhoG and Rac, two GTPases that function in tandem during engulfment.  相似文献   
132.
We report the first stopped-flow fluorescence analysis of transition metal binding (Co(2+), Ni(2+), Cu(2+), and Zn(2+)) to the H-N-H endonuclease motif within colicin E9 (the E9 DNase). The H-N-H consensus forms the active site core of a number of endonuclease groups but is also structurally homologous to the so-called treble-clef motif, a ubiquitous zinc-binding motif found in a wide variety of metalloproteins. We find that all the transition metal ions tested bind via multistep mechanisms. Binding was further dissected for Ni(2+) and Zn(2+) ions through the use of E9 DNase single tryptophan mutants, which demonstrated that most steps reflect conformational rearrangements that occur after the bimolecular collision, many common to the two metals, while one appears specific to zinc. The kinetically derived equilibrium dissociation constants (K(d)) for transition metal binding to the E9 DNase agree with previously determined equilibrium measurements and so confirm the validity of the derived kinetic mechanisms. Zn(2+) binds tightest to the enzyme (K(d) approximately 10(-)(9) M) but does not support endonuclease activity, whereas the other metals (K(d) approximately 10(-)(6) M) are active in endonuclease assays implying that the additional step seen for Zn(2+) traps the enzyme in an inactive but high affinity state. Metal-induced conformational changes are likely to be a conserved feature of H-N-H/treble clef motif proteins since similar Zn(2+)-induced, multistep binding was observed for other colicin DNases. Moreover, they appear to be independent both of the conformational heterogeneity that is naturally present within the E9 DNase at equilibrium, as well as the conformational changes that accompany the binding of its cognate inhibitor protein Im9.  相似文献   
133.
The feline and canine transferrin receptors (TfRs) bind canine parvovirus to host cells and mediate rapid capsid uptake and infection. The TfR and its ligand transferrin have well-described pathways of endocytosis and recycling. Here we tested several receptor-dependent steps in infection for their role in virus infection of cells. Deletions of cytoplasmic sequences or mutations of the Tyr-Thr-Arg-Phe internalization motif reduced the rate of receptor uptake from the cell surface, while polar residues introduced into the transmembrane sequence resulted in increased degradation of transferrin. However, the mutant receptors still mediated efficient virus infection. In contrast, replacing the cytoplasmic and transmembrane sequences of the feline TfR with those of the influenza virus neuraminidase (NA) resulted in a receptor that bound and endocytosed the capsid but did not mediate viral infection. This chimeric receptor became localized to detergent-insoluble membrane domains. To test the effect of structural virus receptor interaction on infection, two chimeric receptors were prepared which contained antibody-variable domains that bound the capsid in place of the TfR ectodomain. These chimeric receptors bound CPV capsids and mediated uptake but did not result in cell infection. Adding soluble feline TfR ectodomain to the virus during that uptake did not allow infection.  相似文献   
134.
The proapoptotic protein Bad is a key player in cell survival decisions, and is regulated post-translationally by several signaling networks. We expressed Bad in mouse embryonic fibroblasts to sensitize them to apoptosis, and tested cell lines derived from knock-out mice to establish the significance of the interaction between the adaptor protein Grb10 and the Raf-1 protein kinase in anti-apoptotic signaling pathways targeting Bad. When compared with wild-type cells, both Grb10 and Raf-1-deficient cells exhibit greatly enhanced sensitivity to apoptosis in response to Bad expression. Structure-function analysis demonstrates that, in this cellular model, the SH2, proline-rich, and pleckstrin homology domains of Grb10, as well as its Akt phosphorylation site and consequent binding by 14-3-3, are all necessary for its anti-apoptotic functions. As for Raf-1, its kinase activity, its ability to be phosphorylated by Src on Tyr-340/341 and the binding of its Ras-associated domain to the Grb10 SH2 domain are all necessary to promote cell survival. Silencing the expression of either Grb10 or Raf-1 by small interfering RNAs as well as mutagenesis of specific serine residues on Bad, coupled with signaling inhibitor studies, all indicate that Raf-1 and Grb10 are required for the ability of both the phosphatidylinositol 3-kinase/Akt and MAP kinase pathways to modulate the phosphorylation and inactivation of Bad. Because total Raf-1, ERK, and Akt kinase activities are not impaired in the absence of Grb10, we propose that this adapter protein creates a subpopulation of Raf-1 with specific anti-apoptotic activity.  相似文献   
135.
We present genetic studies that help define the functional network underlying intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Our analysis shows that proteolysis, particularly that controlled by the membrane protease FtsH, is a major determinant of resistance. First, we examined the consequences of inactivating genes controlled by AmgRS, a two-component regulator required for intrinsic tobramycin resistance. Three of the gene products account for resistance: a modulator of FtsH protease (YccA), a membrane protease (HtpX), and a membrane protein of unknown function (PA5528). Second, we screened mutations inactivating 66 predicted proteases and related functions. Insertions inactivating two FtsH protease accessory factors (HflK and HflC) and a cytoplasmic protease (HslUV) increased tobramycin sensitivity. Finally, we generated an ftsH deletion mutation. The mutation dramatically increased aminoglycoside sensitivity. Many of the functions whose inactivation increased sensitivity appeared to act independently, since multiple mutations led to additive or synergistic effects. Up to 500-fold increases in tobramycin sensitivity were observed. Most of the mutations also were highly pleiotropic, increasing sensitivity to a membrane protein hybrid, several classes of antibiotics, alkaline pH, NaCl, and other compounds. We propose that the network of proteases provides robust protection from aminoglycosides and other substances through the elimination of membrane-disruptive mistranslation products.  相似文献   
136.
A series of reboxetine analogs was synthesized and evaluated for in vitro binding as racemic mixtures. The best candidate (INER) was synthesized as the optically pure (S,S) enantiomer, labeled with iodine-123 and its in vivo binding determined by SPECT imaging in baboons. The in vivo specificity, selectivity, and kinetics of [123I]INER make it a promising agent for imaging NET in vivo by noninvasive SPECT imaging.  相似文献   
137.
Abeta(1-42) peptide, found as aggregated species in Alzheimer's disease brain, is linked to the onset of Alzheimer's disease. Many reports have linked metals to inducing Abeta aggregation and amyloid plaque formation. Abeta(25-35), a fragment from the C-terminal end of Abeta(1-42), lacks the metal coordinating sites found in the full-length peptide and is neurotoxic to cortical cortex cell cultures. We report solid-state NMR studies of Abeta(25-35) in model lipid membrane systems of anionic phospholipids and cholesterol, and compare structural changes to those of Abeta(1-42). When added after vesicle formation, Abeta(25-35) was found to interact with the lipid headgroups and slightly perturb the lipid acyl-chain region; when Abeta(25-35) was included during vesicle formation, it inserted deeper into the bilayer. While Abeta(25-35) retained the same beta-sheet structure irrespective of the mode of addition, the longer Abeta(1-42) appeared to have an increase in beta-sheet structure at the C-terminus when added to phospholipid liposomes after vesicle formation. Since the Abeta(25-35) fragment is also neurotoxic, the full-length peptide may have more than one pathway for toxicity.  相似文献   
138.
Translocation of twin-arginine precursor proteins across the cytoplasmic membrane of Escherichia coli requires the three membrane proteins TatA, TatB, and TatC. TatC and TatB were shown to be involved in precursor binding. We have analyzed in vitro a number of single alanine substitutions in tatC that were previously shown to compromise in vivo the function of the Tat translocase. All tatC mutants that were defective in precursor translocation into cytoplasmic membrane vesicles concomitantly interfered with precursor binding not only to TatC but also to TatB. Hence structural changes of TatC that affect precursor targeting simultaneously abolish engagement of the twin-arginine signal sequence with TatB and block the formation of a functional Tat translocase. Since these phenotypes were observed for tatC mutations spread over the first half of TatC, this entire part of the molecule must globally be involved in precursor binding.  相似文献   
139.
The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained.  相似文献   
140.
An Arabidopsis thaliana (L.) Heynh. cDNA encoding a novel 16-kDa protein (P16) of the chloroplast thylakoid lumen has been characterised. The function of the protein is unknown but it shares some sequence similarity with alpha allophycocyanins. P16 is synthesised with a bipartite, lumen-targeting presequence, and import experiments demonstrated that this protein follows the ΔpH-dependent pathway. Analysis of the thylakoid transfer peptide revealed two unusual features. Firstly, the key targeting determinant is predicted to be a twin-arginine followed by a highly hydrophobic residue two residues later, rather than at the third position as in most transfer peptides. Secondly, the C-terminal domain of the transfer peptide contains multiple charged residues which may help to prevent mistargeting by the Sec-type protein translocase. Received: 16 October 1998 / Accepted: 29 October 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号