全文获取类型
收费全文 | 6227篇 |
免费 | 528篇 |
国内免费 | 5篇 |
专业分类
6760篇 |
出版年
2023年 | 38篇 |
2022年 | 55篇 |
2021年 | 92篇 |
2020年 | 72篇 |
2019年 | 112篇 |
2018年 | 106篇 |
2017年 | 82篇 |
2016年 | 151篇 |
2015年 | 281篇 |
2014年 | 300篇 |
2013年 | 329篇 |
2012年 | 452篇 |
2011年 | 424篇 |
2010年 | 287篇 |
2009年 | 282篇 |
2008年 | 382篇 |
2007年 | 370篇 |
2006年 | 346篇 |
2005年 | 311篇 |
2004年 | 316篇 |
2003年 | 314篇 |
2002年 | 233篇 |
2001年 | 75篇 |
2000年 | 54篇 |
1999年 | 91篇 |
1998年 | 96篇 |
1997年 | 66篇 |
1996年 | 55篇 |
1995年 | 72篇 |
1994年 | 55篇 |
1993年 | 52篇 |
1992年 | 48篇 |
1991年 | 47篇 |
1990年 | 51篇 |
1989年 | 41篇 |
1988年 | 35篇 |
1987年 | 29篇 |
1986年 | 36篇 |
1985年 | 30篇 |
1984年 | 38篇 |
1983年 | 31篇 |
1982年 | 41篇 |
1981年 | 39篇 |
1980年 | 27篇 |
1979年 | 23篇 |
1978年 | 22篇 |
1977年 | 27篇 |
1975年 | 18篇 |
1974年 | 33篇 |
1973年 | 19篇 |
排序方式: 共有6760条查询结果,搜索用时 15 毫秒
91.
Mitchell T. Irwin Jean-Luc Raharison David R. Raubenheimer Colin A. Chapman Jessica M. Rothman 《PloS one》2015,10(6)
Animals experience spatial and temporal variation in food and nutrient supply, which may cause deviations from optimal nutrient intakes in both absolute amounts (meeting nutrient requirements) and proportions (nutrient balancing). Recent research has used the geometric framework for nutrition to obtain an improved understanding of how animals respond to these nutritional constraints, among them free-ranging primates including spider monkeys and gorillas. We used this framework to examine macronutrient intakes and nutrient balancing in sifakas (Propithecus diadema) at Tsinjoarivo, Madagascar, in order to quantify how these vary across seasons and across habitats with varying degrees of anthropogenic disturbance. Groups in intact habitat experience lean season decreases in frugivory, amounts of food ingested, and nutrient intakes, yet preserve remarkably constant proportions of dietary macronutrients, with the proportional contribution of protein to the diet being highly consistent. Sifakas in disturbed habitat resemble intact forest groups in the relative contribution of dietary macronutrients, but experience less seasonality: all groups’ diets converge in the lean season, but disturbed forest groups largely fail to experience abundant season improvements in food intake or nutritional outcomes. These results suggest that: (1) lemurs experience seasonality by maintaining nutrient balance at the expense of calories ingested, which contrasts with earlier studies of spider monkeys and gorillas, (2) abundant season foods should be the target of habitat management, even though mortality might be concentrated in the lean season, and (3) primates’ within-group competitive landscapes, which contribute to variation in social organization, may vary in complex ways across habitats and seasons. 相似文献
92.
PHOSPHO1 is a recently identified phosphatase whose expression is upregulated in mineralizing cells and is implicated in the generation of inorganic phosphate for matrix mineralization, a process central to skeletal development. The enzyme is a member of the haloacid dehalogenase (HAD) superfamily of magnesium-dependent hydrolases. However, the natural substrate(s) is as yet unidentified and to date no structural information is known. We have identified homologous proteins in a number of species and have modelled human PHOSPHO1 based upon the crystal structure of phosphoserine phosphatase (PSP) from Methanococcus jannaschii. The model includes the catalytic Mg(2+) atom bound via three conserved Asp residues (Asp32, Asp34 and Asp203); O-ligands are also provided by a phosphate anion and two water molecules. Additional residues involved in PSP-catalysed hydrolysis are conserved and are located nearby, suggesting both enzymes share a similar reaction mechanism. In PHOSPHO1, none of the PSP residues that confer the enzyme's substrate specificity (Arg56, Glu20, Met43 and Phe49) are conserved. Instead, we propose that two fully conserved Asp residues (Asp43 and Asp123), not present in PSPs contribute to substrate specificity in PHOSPHO1. Our findings show that PHOSPHO1 is not a member of the subfamily of PSPs but belongs to a novel, closely related enzyme group within the HAD superfamily. 相似文献
93.
94.
Colin P. Sharp Matthew LeBreton Kalle Kantola Ahmadou Nana Joseph Le Doux Diffo Cyrille F. Djoko Ubald Tamoufe John A. Kiyang Tafon G. Babila Eitel Mpoudi Ngole Oliver G. Pybus Eric Delwart Eric Delaporte Martine Peeters Maria Soderlund-Venermo Klaus Hedman Nathan D. Wolfe Peter Simmonds 《Journal of virology》2010,84(19):10289-10296
Infections with human parvoviruses B19 and recently discovered human bocaviruses (HBoVs) are widespread, while PARV4 infections are transmitted parenterally and prevalent specifically in injecting drug users and hemophiliacs. To investigate the exposure and circulation of parvoviruses related to B19 virus, PARV4, and HBoV in nonhuman primates, plasma samples collected from 73 Cameroonian wild-caught chimpanzees and gorillas and 91 Old World monkey (OWM) species were screened for antibodies to recombinant B19 virus, PARV4, and HBoV VP2 antigens by enzyme-linked immunosorbent assay (ELISA). Moderate to high frequencies of seroreactivity to PARV4 (63% and 18% in chimpanzees and gorillas, respectively), HBoV (73% and 36%), and B19 virus (8% and 27%) were recorded for apes, while OWMs were uniformly negative (for PARV4 and B19 virus) or infrequently reactive (3% for HBoV). For genetic characterization, plasma samples and 54 fecal samples from chimpanzees and gorillas collected from Cameroonian forest floors were screened by PCR with primers conserved within Erythrovirus, Bocavirus, and PARV4 genera. Two plasma samples (chimpanzee and baboon) were positive for PARV4, while four fecal samples were positive for HBoV-like viruses. The chimpanzee PARV4 variant showed 18% and 15% nucleotide sequence divergence in NS and VP1/2, respectively, from human variants (9% and 7% amino acid, respectively), while the baboon variant was substantially more divergent, mirroring host phylogeny. Ape HBoV variants showed complex sequence relationships with human viruses, comprising separate divergent homologues of HBoV1 and the recombinant HBoV3 species in chimpanzees and a novel recombinant species in gorillas. This study provides the first evidence for widespread circulation of parvoviruses in primates and enables future investigations of their epidemiology, host specificity, and (co)evolutionary histories.Autonomous parvoviruses known to infect humans comprise parvovirus B19 (18) and the recently discovered PARV4 (22) and human bocavirus (HBoV) (3). Members of the family Parvoviridae are genetically and biologically diverse and are classified into several genera or groups, showing marked differences in host range, pathology, and tissue/cellular tropisms (18). Human parvovirus B19, a member of the Erythrovirus genus, is transmitted primarily by the respiratory route but causes systemic infections. Erythroid progenitor cells are specifically targeted through expression of globoside P antigen, which acts as the B19 virus receptor for entry (5). In common with infections by most parvoviruses, B19 virus infections are acute; a period of intense viremia is followed by seroconversion for antibody to B19 virus and lifelong immunity from reinfection (29). Despite the clearance of viremia and seroconversion for antibody, lifelong persistence of viral DNA in tissues has been shown to occur (12, 20, 26, 28, 43, 58). Three genotypes of B19 virus have been described, differing in nucleotide sequence by approximately 13 to 14% (7, 21, 41, 53); genotypes 1 and 2 have been found in Europe, the United States, and other Western countries, while genotype 3 is restricted to sub-Saharan Africa and South America (7, 47, 49). B19 virus widely circulates in human populations worldwide; in Western countries, several studies have documented increasing frequencies of B19 virus seropositivity with age, rising to approximately 60 to 70% by adulthood (15, 39, 48, 61).Another human parvovirus, PARV4, shows markedly different epidemiology and transmission routes. It was originally detected in plasma from an individual with an “acute infection syndrome” resembling that of primary human immunodeficiency virus (HIV) infection (22). While this clinical presentation has not been observed again, infection with PARV4 is known to be widespread specifically in individuals with a history of parenteral exposure (injecting drug users [IDUs], hemophiliacs, polytransfused individuals), with a strikingly higher incidence in those infected with HIV-1 (13, 14, 30, 35, 54). These observations suggest that PARV4 is primarily transmitted though parenteral routes in Western countries (54, 56). In common with infection with the better-characterized human parvovirus B19, infection with PARV4 is associated with a period of acute viremia, followed by seroconversion for antibody and long-term persistence of viral DNA sequences in lymphoid and other tissue (33, 37, 52). Circulating variants of PARV4 have been classified into three distinct genotypes exhibiting approximately 8% nucleotide sequence divergence from each other. Genotypes 1 and 2 circulate in Western countries, while genotype 3 has to date been recorded only in sub-Saharan Africa (45, 55).The third human parvovirus, HBoV (3), shows a number of epidemiological and clinical attributes different from those of both B19 virus and PARV4. HBoV was originally found in the respiratory tract of young children and has been the subject of intense investigation as a potential cause of human respiratory disease (reviewed in references 1, 51, and 62). Although it is frequently detected by PCR in the nasopharynx of viremic individuals with primary infections with lower respiratory tract disease, other coinfecting respiratory viruses are frequently detected (19). HBoV additionally shows long-term, low-level carriage in the respiratory tract after primary infection, which further complicates PCR-based etiological studies (2, 38) and warrants the use of other diagnostic strategies, such as serology (30, 32, 59). In contrast to the rather minimal genetic diversity of B19 virus and PARV4 genotypes, bocaviruses infecting humans are now known to comprise three to four major genetic variants (termed types or species 1 to 4) (23, 24). HBoV1 and HBoV2 show 22%, 33%, and 20% amino acid sequence divergence from each other in the encoded viral nonstructural (NS), NP-1, and structural VP1/VP2 proteins, respectively, the latter potentially leading to antigenic diversity and some loss of antigenic cross-reactivity. A third type/species of HBoV is a chimeric form with a nonstructural gene region (NS, NP1) most similar to HBoV1, a recombination breakpoint in the intergenic region between NP1 and VP1, and structural genes related to those of HBoV2 (4, 23). Current data suggest that only HBoV1 is capable of infecting the respiratory tract; most published large-scale screening studies have failed to detect HBoV2 (or HBoV3) in respiratory samples (10, 11, 60), while all three types/species are detectable in fecal samples, indicating the existence of an alternative or additional site of virus replication (23). Despite extensive inquiry, the exact role of HBoV1 in respiratory disease remains unclear, as is the proposed etiological role of HBoV2 (and possibly HBoV3) in gastroenteritis (4, 11, 23, 50). Very recently, a fourth species/type, HBoV4, has been detected in fecal samples; genetically it also shows evidence for past recombination, with NS and NP1 region sequences grouping with HBoV2, while VP1/VP2 is more closely related to HBoV3 (23).We have little understanding of the past epidemiology, evolution, and origins of human parvoviruses. For both B19 virus and PARV4, evidence has been obtained for a temporal succession of genotypes over time (37, 43); in Europe, B19 virus genotype 1 largely replaced type 2 in the 1960 and 1970s (43), while current data indicate that a similar replacement of PARV4 genotypes occurred within the last 20 years (37). The highly restricted sequence diversity of currently circulating variants of PARV4 and B19 virus and of HBoV1 variants supports the hypothesis of a relatively recent emergence and spread of these viruses in human populations (36, 42, 64).The existence and evolution of parvoviruses on a much longer time scale is suggested by the observations that members of the Erythrovirus and Parvovirus genera both contain viruses that are highly host species specific and that the molecular phylogenies of both genera are largely congruent with those of their hosts (34). This has led to the hypothesis of long-term coevolution of parvoviruses with their host over the 90 million years of mammalian evolution and perhaps beyond. Among erythroviruses, simian homologues of B19 virus have been found in cynomolgus monkeys (44) and rhesus and pig-tailed macaques (16) and more genetically distant viruses have been characterized in chipmunks and cows (9, 63). Divergent homologues of PARV4 in pigs and cows have been described (31), while the bovine and canine parvoviruses distantly related to HBoV are the originally described members of the Bocavirus genus. However, the process of virus-host codivergence is known to be punctuated by occasional cross-species transmissions, including the well-documented spread of feline parvovirus to dogs (46). Based on serological evidence, the possible transmission of simian erythroviruses to animal handlers has been proposed (6).To gain further insights into the origins and evolution of human parvoviruses, we have performed large-scale serological and PCR-based screening of nonhuman primates (chimpanzees and gorillas) and of several species of Old World monkeys (OWMs) for evidence of infection with parvoviruses that are antigenically related to the human B19, PARV4, and HBoV viruses. By PCR, we have sought to genetically characterize homologues of the three autonomous human parvoviruses in apes and Old World monkey species and to analyze their evolutionary relationship to human and other mammalian homologues of these viruses. 相似文献
95.
John E. Moore Yasunori Maeda Jiru Xu B. Cherie Millar Peter H. Herold V. M. J. Browne-Lauwers Colin E. Goldsmith Anne Loughrey Paul J. Rooney J. Stuart Elborn Motoo Matsuda 《World journal of microbiology & biotechnology》2008,24(7):1227-1232
To employ 16S rDNA PCR and automated sequencing techniques to identify a collection of bacterial veterinary pathogens from
avian, equine, canine and ovine sources, that have proven difficult to identify, employing conventional cultural techniques.
Universal or “broad-range” eubacterial PCR was performed on a collection of 46 difficult-to-identify bacterial isolates originating
from clinical veterinary specimens. 16S rDNA PCR was performed using two sets of universal primers to successfully generate
a composite amplicon of 1,068 bp, which was sequenced to obtain each isolate’s identity. Sequence analysis was able to identify
all isolates examined with relative ease. Where the use of molecular identification methods is justified, such as in outbreak
control or bioterrorism in animal health, employment of partial 16S rDNA PCR and sequencing employing universal or “broad-range”
16S rDNA, provides a valuable and reliable method of identification of such pathogens. 相似文献
96.
SUMMARY: In a recent article Begg et al. (2007, Biometrics 63, 522-530) proposed a statistical test to determine whether or not a diagnosed second primary tumor is biologically independent of the original primary tumor, by comparing patterns of allelic losses at candidate genetic loci. The proposed concordant mutations test is a conditional test, an adaptation of Fisher's exact test, that requires no knowledge of the marginal mutation probabilities. The test was shown to have generally good properties, but is susceptible to anticonservative bias if there is wide variation in mutation probabilities between loci, or if the individual mutation probabilities of the parental alleles for individual patients differ substantially from each other. In this article, a likelihood ratio test is derived in an effort to address these validity issues. This test requires prespecification of the marginal mutation probabilities at each locus, parameters for which some information will typically be available in the literature. In simulations this test is shown to be valid, but to be considerably less efficient than the concordant mutations test for sample sizes (numbers of informative loci) typical of this problem. Much of the efficiency deficit can be recovered, however, by restricting the allelic imbalance parameter estimate to a prespecified range, assuming that this parameter is in the prespecified range. 相似文献
97.
Jurriaan M. de Vos Colin E. Hughes Gerald M. Schneeweiss Brian R. Moore Elena Conti 《Proceedings. Biological sciences / The Royal Society》2014,281(1784)
The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower–pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin''s model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification. 相似文献
98.
99.
Curran W Clifford CW Benton CP 《Proceedings. Biological sciences / The Royal Society》2009,276(1655):263-268
It is well known that context influences our perception of visual motion direction. For example, spatial and temporal context manipulations can be used to induce two well-known motion illusions: direction repulsion and the direction after-effect (DAE). Both result in inaccurate perception of direction when a moving pattern is either superimposed on (direction repulsion), or presented following adaptation to (DAE), another pattern moving in a different direction. Remarkable similarities in tuning characteristics suggest that common processes underlie the two illusions. What is not clear, however, is whether the processes driving the two illusions are expressions of the same or different neural substrates. Here we report two experiments demonstrating that direction repulsion and the DAE are, in fact, expressions of different neural substrates. Our strategy was to use each of the illusions to create a distorted perceptual representation upon which the mechanisms generating the other illusion could potentially operate. We found that the processes mediating direction repulsion did indeed access the distorted perceptual representation induced by the DAE. Conversely, the DAE was unaffected by direction repulsion. Thus parallels in perceptual phenomenology do not necessarily imply common neural substrates. Our results also demonstrate that the neural processes driving the DAE occur at an earlier stage of motion processing than those underlying direction repulsion. 相似文献
100.