首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6284篇
  免费   538篇
  国内免费   5篇
  2023年   38篇
  2022年   49篇
  2021年   95篇
  2020年   75篇
  2019年   113篇
  2018年   106篇
  2017年   84篇
  2016年   153篇
  2015年   282篇
  2014年   299篇
  2013年   329篇
  2012年   454篇
  2011年   423篇
  2010年   286篇
  2009年   283篇
  2008年   383篇
  2007年   367篇
  2006年   347篇
  2005年   312篇
  2004年   315篇
  2003年   316篇
  2002年   234篇
  2001年   77篇
  2000年   52篇
  1999年   93篇
  1998年   96篇
  1997年   66篇
  1996年   56篇
  1995年   73篇
  1994年   55篇
  1993年   55篇
  1992年   55篇
  1991年   51篇
  1990年   54篇
  1989年   43篇
  1988年   39篇
  1987年   32篇
  1986年   39篇
  1985年   34篇
  1984年   40篇
  1983年   31篇
  1982年   43篇
  1981年   38篇
  1980年   28篇
  1979年   24篇
  1978年   25篇
  1977年   27篇
  1975年   19篇
  1974年   34篇
  1973年   21篇
排序方式: 共有6827条查询结果,搜索用时 15 毫秒
241.
Ongoing climate change is shifting species distributions and increasing extinction risks globally. It is generally thought that large population sizes and short generation times of marine phytoplankton may allow them to adapt rapidly to global change, including warming, thus limiting losses of biodiversity and ecosystem function. Here, we show that a marine diatom survives high, previously lethal, temperatures after adapting to above‐optimal temperatures under nitrogen (N)‐replete conditions. N limitation, however, precludes thermal adaptation, leaving the diatom vulnerable to high temperatures. A trade‐off between high‐temperature tolerance and increased N requirements may explain why N limitation inhibited adaptation. Because oceanic N limitation is common and likely to intensify in the future, the assumption that phytoplankton will readily adapt to rising temperatures may need to be reevaluated.  相似文献   
242.
Ontogenetic dietary shifts (ODSs), the changes in diet utilisation occurring over the life span of an individual consumer, are widespread in the animal kingdom. Understanding ODSs provides fundamental insights into the biological and ecological processes that function at the individual, population and community levels, and is critical for the development and testing of hypotheses around key concepts in trophic theory on model organisms. Here, we synthesise historic and contemporary research on ODSs in fishes, and identify where further research is required. Numerous biotic and abiotic factors can directly or indirectly influence ODSs, but the most influential of these may vary spatially, temporally and interspecifically. Within the constraints imposed by prey availability, we identified competition and predation risk as the major drivers of ODSs in fishes. These drivers do not directly affect the trophic ontogeny of fishes, but may have an indirect effect on diet trajectories through ontogenetic changes in habitat use and concomitant changes in prey availability. The synthesis provides compelling evidence that ODSs can have profound ecological consequences for fish by, for example, enhancing individual growth and lifetime reproductive output or reducing the risk of mortality. ODSs may also influence food‐web dynamics and facilitate the coexistence of sympatric species through resource partitioning, but we currently lack a holistic understanding of the consequences of ODSs for population, community and ecosystem processes and functioning. Studies attempting to address these knowledge gaps have largely focused on theoretical approaches, but empirical research under natural conditions, including phylogenetic and evolutionary considerations, is required to test the concepts. Research focusing on inter‐individual variation in ontogenetic trajectories has also been limited, with the complex relationships between individual behaviour and environmental heterogeneity representing a particularly promising area for future research.  相似文献   
243.
Since European settlement, many granivorous birds of northern Australia's savanna landscapes have declined. One such example, the partridge pigeon (Geophaps smithii), has suffered a significant range contraction, disappearing from at least half of its pre‐European range. Multiple factors have been implicated in this decline, including the loss of traditional Aboriginal burning practices, grazing by large exotic herbivores and predation by feral cats (Felis catus). While populations of partridge pigeon on the Tiwi Islands may be particularly important for the long‐term persistence of this species, they too may be at risk of decline. However, as a reliable method to detect this species has not yet been developed and tested, we lack the ability to identify, at an early stage, the species' decline in a given location or region. This severely limits our capacity to make informed management decisions. Here, we demonstrate that the standard camera trapping approach for native mammal monitoring in northern Australia attained an overall probability of detecting partridge pigeon greater than 0.98. We thus provide a robust estimate of partridge pigeon site occupancy (0.30) on Melville Island, the larger of the two main Tiwi Islands. The information presented here for the partridge pigeon represents a critical first step towards the development of optimal monitoring programmes with which to gauge population trajectories, as well as the response to remedial management actions. In the face of ongoing biodiversity loss, such baseline information is vital for management agencies to make informed decisions and should therefore be sought for as many species as possible.  相似文献   
244.
Three case studies spanning tropical, subtropical and temperate environments highlight the minimum potential benefits of investing in repair of coastal seascapes. Fisheries, a market benefit indicator readily understood by a range of stakeholders from policymakers to community advocates, were used as a surrogate for ecosystem services generated through seascape habitat restoration. For each case study, while recognising that biological information will always remain imperfect, the prospects for seascape repair are compelling.  相似文献   
245.
246.
The increasingdemandfor biopharmaceutical products drives the search for efficient cell factories that are able to sustainably support rapid growth, high productivity, and product quality. As these depend on energy generation, here the genomic variation in nuclear genes associated with mitochondria and energy metabolism and the mitochondrial genome of 14 cell lines is investigated. The variants called enable reliable tracing of lineages. Unique sequence variations are observed in cell lines adapted to grow in protein‐free media, enriched in signaling pathways or mitogen‐activated protein kinase 3. High‐producing cell lines bear unique mutations in nicotinamide adenine dinucleotide (NADH) dehydrogenase (ND2 and ND4) and in peroxisomal acyl‐CoA synthetase (ACSL4), involved in lipid metabolism. As phenotypes are determined not only by functional mutations, but also by the exquisite regulation of expression patterns, it is not surprising that ≈50% of the genes investigated here are found to be differentially methylated and thus epigenetically controlled, enabling a clear distinction of high producers, and cells adapted to a minimal, glutamine (Gln)‐free medium. Similar pathways are enriched as those identified by genome variation. This strengthens the hypothesis that these phenomena act together to define cell behavior.  相似文献   
247.
Gene flow between populations can allow the spread of beneficial alleles and genetic diversity between populations, with importance to conservation, invasion biology, and agriculture. Levels of gene flow between populations vary not only with distance, but also with divergence in reproductive phenology. Since phenology is often locally adapted, arriving migrants may be reproductively out of synch with residents, which can depress realized gene flow. In flowering plants, the potential impact of phenological divergence on hybridization between populations can be predicted from overlap in flowering schedules—the daily count of flowers capable of pollen exchange—between a resident and migrant population. The accuracy of this prospective hybridization estimate, based on parental phenotypes, rests upon the assumptions of unbiased pollen transfer between resident and migrant active flowers. We tested the impact of phenological divergence on resident–migrant mating frequencies in experiments that mimicked a single large gene flow event. We first prospectively estimated mating frequencies two lines of Brassica rapaselected or early and late flowering. We then estimated realized mating frequencies retrospectively through progeny testing. The two estimates strongly agreed in a greenhouse experiment, where procedures ensured saturating, unbiased pollination. Under natural pollination in the field, the rate of resident–migrant mating, was lower than estimated by phenological divergence alone, although prospective and retrospective estimates were correlated. In both experiments, differences between residents and migrants in flowering schedule shape led to asymmetric hybridization. Results suggest that a prospective estimate of hybridization based on mating schedules can be a useful, although imperfect, tool for evaluating potential gene flow. They also illustrate the impact of mating phenology on the magnitude and symmetry of reproductive isolation.  相似文献   
248.
249.
Cytochrome P450 oxidoreductase (POR) acts as an electron donor for all cytochrome P450 enzymes. Knockout mouse Por(-/-) mutants, which are early embryonic (E9.5) lethal, have been found to have overall elevated retinoic acid (RA) levels, leading to the idea that POR early developmental function is mainly linked to the activity of the CYP26 RA-metabolizing enzymes (Otto et al., Mol. Cell. Biol. 23, 6103-6116). By crossing Por mutants with a RA-reporter lacZ transgene, we show that Por(-/-) embryos exhibit both elevated and ectopic RA signaling activity e.g. in cephalic and caudal tissues. Two strategies were used to functionally demonstrate that decreasing retinoid levels can reverse Por(-/-) phenotypic defects, (i) by culturing Por(-/-) embryos in defined serum-free medium, and (ii) by generating compound mutants defective in RA synthesis due to haploinsufficiency of the retinaldehyde dehydrogenase 2 (Raldh2) gene. Both approaches clearly improved the Por(-/-) early phenotype, the latter allowing mutants to be recovered up until E13.5. Abnormal brain patterning, with posteriorization of hindbrain cell fates and defective mid- and forebrain development and vascular defects were rescued in E9.5 Por(-/-) embryos. E13.5 Por(-/-); Raldh2(+/-) embryos exhibited abdominal/caudal and limb defects that strikingly phenocopy those of Cyp26a1(-/-) and Cyp26b1(-/-) mutants, respectively. Por(-/-); Raldh2(+/-) limb buds were truncated and proximalized and the anterior-posterior patterning system was not established. Thus, POR function is indispensable for the proper regulation of RA levels and tissue distribution not only during early embryonic development but also in later morphogenesis and molecular patterning of the brain, abdominal/caudal region and limbs.  相似文献   
250.
Mouse models of the laminopathies   总被引:3,自引:0,他引:3  
The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号