首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6167篇
  免费   525篇
  国内免费   5篇
  6697篇
  2023年   37篇
  2022年   54篇
  2021年   92篇
  2020年   72篇
  2019年   112篇
  2018年   106篇
  2017年   82篇
  2016年   150篇
  2015年   279篇
  2014年   296篇
  2013年   326篇
  2012年   448篇
  2011年   421篇
  2010年   284篇
  2009年   281篇
  2008年   380篇
  2007年   363篇
  2006年   343篇
  2005年   308篇
  2004年   313篇
  2003年   311篇
  2002年   232篇
  2001年   74篇
  2000年   52篇
  1999年   86篇
  1998年   96篇
  1997年   65篇
  1996年   55篇
  1995年   72篇
  1994年   54篇
  1993年   51篇
  1992年   47篇
  1991年   47篇
  1990年   51篇
  1989年   40篇
  1988年   35篇
  1987年   29篇
  1986年   36篇
  1985年   30篇
  1984年   38篇
  1983年   30篇
  1982年   41篇
  1981年   37篇
  1980年   27篇
  1979年   23篇
  1978年   22篇
  1977年   27篇
  1975年   18篇
  1974年   33篇
  1973年   19篇
排序方式: 共有6697条查询结果,搜索用时 0 毫秒
31.
Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.  相似文献   
32.
In many animals, mate choice is important for the maintenance of reproductive isolation between species. Traits important for mate choice and behavioral isolation are predicted to be under strong stabilizing selection within species; however, such traits can also exhibit variation at the population level driven by neutral and adaptive evolutionary processes. Here, we describe patterns of divergence among androconial and genital chemical profiles at inter‐ and intraspecific levels in mimetic Heliconius butterflies. Most variation in chemical bouquets was found between species, but there were also quantitative differences at the population level. We found a strong correlation between interspecific chemical and genetic divergence, but this correlation varied in intraspecific comparisons. We identified “indicator” compounds characteristic of particular species that included compounds already known to elicit a behavioral response, suggesting an approach for identification of candidate compounds for future behavioral studies in novel systems. Overall, the strong signal of species identity suggests a role for these compounds in species recognition, but with additional potentially neutral variation at the population level.  相似文献   
33.
In this paper, we apply mixture theory to quantitatively predict the transient behavior of drug delivery by using a microneedle array inserted into tissue. In the framework of mixture theory, biological tissue is treated as a multi-phase fluid saturated porous medium, where the mathematical behavior of the tissue is characterized by the conservation equations of multi-phase models. Drug delivery by microneedle array imposes additional requirements on the simulation procedures, including drug absorption by the blood capillaries and tissue cells, as well as a moving interface along its flowing pathway. The contribution of this paper is to combine mixture theory with the moving mesh methods in modeling the transient behavior of drug delivery into tissue. Numerical simulations are provided to obtain drug concentration distributions into tissues and capillaries.  相似文献   
34.
35.
Lipid droplets (LDs) were once viewed as simple, inert lipid micelles. However, they are now known to be organelles with a rich proteome involved in a myriad of cellular processes. LDs are heterogeneous in nature with different sizes and compositions of phospholipids, neutral lipids and proteins. This review takes a focused look at the roles of proteins involved in the regulation of LD formation, expansion, and morphology. The related proteins are summarized such as the fat-specific protein (Fsp27), fat storage-inducing trans- membrane (FIT) proteins, seipin and ADP-ribosylation factor 1-coat protein complex I (Arf-COPI). Finally, we present important challenges in LD biology for a deeper understanding of this dynamic organelle to be achieved.  相似文献   
36.
Use of the 4‐pyridylmethyl ester group for side‐chain protection of glutamic acid residues in solid‐phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI‐MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4‐pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI‐MS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
37.
Translational control was studied in extracts of Lytechinus pictus eggs and zygotes. We showed that neither mRNA nor initiation factors alone limit translation in these lysates; rather they are together rate limiting. Added globin mRNA was translated in egg and zygote lysates but overall protein synthesis did not increase significantly as the added RNA competed with the endogenous message. The lysates mimicked the in vivo response, since microinjection of globin mRNA into L. pictus eggs similarly competed with endogenous mRNAs. A number of translational components were used to determine if they would stimulate protein synthesis in these lysates. The addition of globin polyribosomes increased the level of protein synthesis. The majority of this increase was due to reinitiation of the globin mRNA, and under these conditions the level of endogenous protein synthesis in both egg and zygote extracts did not change. The addition of crude initiation factors alone did not appreciably alter the rate of protein synthesis in the egg lysates. However, in the presence of added mRNA, these initiation factors stimulated translation two- to fourfold. Of all the initiation factors tested, only the guanine nucleotide exchange factor (GEF, eIF-2B, RF) significantly increased protein synthesis when globin mRNA was present. The addition of an unfractionated initiation factor preparation further stimulated protein synthesis in the presence of added GEF and mRNA, suggesting that a component other than mRNA and GEF was also limiting in these egg lysates. Other initiation factors, including eIF-2, eIF-4A, eIF-4B, and eIF-4F, did not substitute for the component in the unfractionated initiation factor preparation. We propose that alkalinization of the cytoplasm and the subsequent activation of initiation factors and mRNAs contribute to the large stimulation of protein synthesis in echinoid eggs after fertilization. Furthermore, we discuss the possibility that the increase in NADPH at the expense of NAD+, which occurs within 3 min after fertilization, may lead to the activation of GEF.  相似文献   
38.
Hepatocytes isolated by perfusion of adult rat liver and cultured on substrata consisting of one or more of the major components of the liver biomatrix (fibronectin, laminin, type IV collagen) have been examined for the synthesis of defined proteins. Under these conditions, tyrosine amino transferase, a marker of hepatocyte function, is maintained at similar levels in response to dexamethasone over 5 days in culture on each substratum, and total cellular protein synthesis remains constant. By contrast, there is a rapid decrease in synthesis and secretion of albumin and a 3-7-fold increase in synthesis and secretion of alpha-fetoprotein which are most marked on a laminin substratum, but least evident on type IV collagen, and an increased synthesis of fibronectin and type IV collagen. The newly synthesized matrix proteins are present in the cell layer as well as in cell secretions. The enhanced synthesis of fibronectin is less in cells seeded onto a fibronectin substratum than on laminin or type IV collagen substrata, and its synthesis by hepatocytes seeded onto a mixed substratum of laminin and fibronectin is down-regulated by fibronectin in a dose-related manner. Similarly, type IV collagen synthesis is less when the cells are seeded on the homologous matrix protein substratum than on heterologous substrata. These results indicate that hepatocytes cultured in serum-free medium on substrata composed of components of the liver biomatrix maintain certain functions of the differentiated state (tyrosine amino transferase), lose others (albumin secretion) and switch to increased synthesis of matrix components as well as fetal markers such as alpha-fetoprotein. The magnitude of these effects depends on the substratum on which the hepatocytes are cultured.  相似文献   
39.
40.
In structure-based drug design, the basic goal is to design molecules that fit complementarily to a given binding pocket. Since such computationally modeled molecules may not adopt the intended bound conformation outside the binding pocket, one challenge is to ensure that the designed ligands adopt similar low energy conformations both inside and outside of the binding pocket. Computational chemistry methods and conformational preferences of small molecules from PDB and Cambridge Structural Database (CSD) can be used to predict the bound structures of the designed molecules. Herein, we review applications of conformational control in structure-based drug design using selected examples from the recent medicinal chemistry literature. The main purpose is to highlight some intriguing conformational features that can be applied to other drug discovery programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号