首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   710篇
  免费   33篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   18篇
  2015年   29篇
  2014年   19篇
  2013年   22篇
  2012年   36篇
  2011年   44篇
  2010年   25篇
  2009年   17篇
  2008年   40篇
  2007年   34篇
  2006年   37篇
  2005年   36篇
  2004年   45篇
  2003年   41篇
  2002年   38篇
  2001年   10篇
  2000年   11篇
  1999年   10篇
  1998年   13篇
  1997年   8篇
  1996年   9篇
  1995年   18篇
  1994年   8篇
  1993年   8篇
  1992年   16篇
  1991年   6篇
  1990年   14篇
  1989年   9篇
  1988年   4篇
  1987年   8篇
  1985年   3篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1978年   3篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1974年   5篇
  1972年   4篇
  1968年   2篇
排序方式: 共有743条查询结果,搜索用时 31 毫秒
671.
In the present work, we report the characterization of a Cryptosporidium parvum strain isolated from a patient who nearly drowned in the Deule River (Lille, France) after being discharged from the hospital where he had undergone allogeneic stem cell transplantation. After being rescued and readmitted to the hospital, he developed fulminant cryptosporidiosis. The strain isolated from the patient's stools was identified as C. parvum II2A15G2R1 (subtype linked to zoonotic exposure) and inoculated into SCID mice. In this host, this virulent C. parvum isolate induced not only severe infection but also invasive gastrointestinal and biliary adenocarcinoma. The observation of adenocarcinomas that progressed through all layers of the digestive tract to the subserosa and spread via blood vessels confirmed the invasive nature of the neoplastic process. These results indicate for the first time that a human-derived C. parvum isolate is able to induce digestive cancer. This study is of special interest considering the exposure of a large number of humans and animals to this waterborne protozoan, which is highly tumorigenic when inoculated in a rodent model.  相似文献   
672.
We describe a severe form of congenital myasthenic syndrome (CMS) caused by two heteroallelic mutations: a nonsense and a missense mutation in the gene encoding agrin (AGRN). The identified mutations, Q353X and V1727F, are located at the N-terminal and at the second laminin G-like (LG2) domain of agrin, respectively. A motor-point muscle biopsy demonstrated severe disruption of the architecture of the neuromuscular junction (NMJ), including: dispersion and fragmentation of endplate areas with normal expression of acetylcholinesterase; simplification of postsynaptic membranes; pronounced reduction of the axon terminal size; widening of the primary synaptic cleft; and, collection of membranous debris material in the primary synaptic cleft and in the subsynaptic cytoplasm. Expression studies in heterologous cells revealed that the Q353X mutation abolished expression of full-length agrin. Moreover, the V1727F mutation decreased agrin-induced clustering of the acetylcholine receptor (AChR) in cultured C2 muscle cells by >100-fold, and phosphorylation of the MuSK receptor and AChR beta subunit by ~tenfold. Surprisingly, the V1727F mutant also displayed increased binding to α-dystroglycan but decreased binding to a neural (z+) agrin-specific antibody. Our findings demonstrate that agrin mutations can associate with a severe form of CMS and cause profound distortion of the architecture and function of the NMJ. The impaired ability of V1727F agrin to activate MuSK and cluster AChRs, together with its increased affinity to α-dystroglycan, mimics non-neural (z-) agrin and are important determinants of the pathogenesis of the disease.  相似文献   
673.
Overnutrition during pre- and postnatal development both confer increased susceptibility to renal and metabolic risks later in life; however, whether they have an additive effect on the severity of renal and metabolic injury remains unknown. The present study tested the hypothesis that a combination of a pre- and postnatal diet high in fat/fructose would exacerbate renal and metabolic injury in male offspring later in life. Male offspring born to high fat/high-fructose-fed mothers and fed a high-fat/high-fructose diet postnatally (HF-HF) had increased urine albumin excretion (450%), glomerulosclerosis (190%), and tubulointerstitial fibrosis (101%) compared with offspring born to mothers fed a standard diet and fed a standard diet postnatally (NF-NF). No changes in blood pressure or glomerular filtration were observed between any of the treatment groups. The HF-HF offspring weighed ~23% more than offspring born to mothers fed a high-fat/high-fructose diet and fed a normal diet postnatally (HF-NF), as well as offspring born to mothers fed a standard diet regardless of their postnatal diet. The HF-HF rats also had increased (and more variable) blood glucose levels over 12 wk of being fed a high-fat/high-fructose diet. A combination of exposure to a high-fat/high-fructose diet in utero and postnatally increased plasma insulin levels by 140% compared with NF-NF offspring. Our data suggest that the combined exposure to overnutrition during fetal development and early postnatal development potentiate the susceptibility to renal and metabolic disturbances later in life.  相似文献   
674.
Mutations in the gene coding for selenoprotein N (SelN), a selenium containing protein of unknown function, cause different forms of congenital muscular dystrophy in humans. These muscular diseases are characterized by early onset of hypotonia which predominantly affect in axial muscles. We used zebrafish as a model system to understand the function of SelN in muscle formation during embryogenesis. Zebrafish SelN is highly homologous to its human counterpart and amino acids corresponding to the mutated positions in human muscle diseases are conserved in the zebrafish protein. The sepn1 gene is highly expressed in the somites and notochord during early development. Inhibition of the sepn1 gene by injection of antisense morpholinos does not alter the fate of the muscular tissue, but causes muscle architecture disorganization and greatly reduced motility. Ultrastructural analysis of the myotomes reveals defects in muscle sarcomeric organization and in myofibers attachment, as well as altered myoseptum integrity. These studies demonstrate the important role of SelN for muscle organization during early development. Moreover, alteration of myofibrils architecture and tendon-like structure in embryo deficient for SelN function provide new insights into the pathological mechanism of SelN-related myopathy.  相似文献   
675.
In spite of the numerous efforts made to control their transmission, parasite schistosomes still represent a serious public health concern and a major economic problem in many developing countries. Praziquantel (PZQ) is the drug of choice for the treatment of schistosomiasis and the only one that is available for mass chemotherapy. However, its widespread use and its inefficacy on juvenile parasites raise fears that schistosomes will develop drug resistance, and make the development of alternative drugs highly desirable. Protein tyrosine kinases (PTKs) are key molecules that control cell differentiation and proliferation and they already represent important targets for molecular cancer therapy. The recent characterization in Schistosoma mansoni of several cytosolic and receptor PTKs, with properties similar but also divergent from their vertebrate counterparts, opens new perspectives for the development of novel strategies in chemotherapy of schistosomiasis, which could be based on the use of parasite-specific tyrosine phosphorylation inhibitors.  相似文献   
676.
The psychrophilic cellulase, Cel5G, from the Antarctic bacterium Pseudoalteromonas haloplanktis is composed of a catalytic module (CM) joined to a carbohydrate-binding module (CBM) by an unusually long, extended and flexible linker region (LR) containing three loops closed by three disulfide bridges. To evaluate the possible role of this region in cold adaptation, the LR was sequentially shortened by protein engineering, successively deleting one and two loops of this module, whereas the last disulfide bridge was also suppressed by replacing the last two cysteine residue by two alanine residues. The kinetic and thermodynamic properties of the mutants were compared with those of the full-length enzyme, and also with those of the cold-adapted CM alone and with those of the homologous mesophilic enzyme, Cel5A, from Erwinia chrysanthemi. The thermostability of the mutated enzymes as well as their relative flexibility were evaluated by differential scanning calorimetry and fluorescence quenching respectively. The topology of the structure of the shortest mutant was determined by SAXS (small-angle X-ray scattering). The data indicate that the sequential shortening of the LR induces a regular decrease of the specific activity towards macromolecular substrates, reduces the relative flexibility and concomitantly increases the thermostability of the shortened enzymes. This demonstrates that the long LR of the full-length enzyme favours the catalytic efficiency at low and moderate temperatures by rendering the structure not only less compact, but also less stable, and plays a crucial role in the adaptation to cold of this cellulolytic enzyme.  相似文献   
677.
Epidemiological and animal studies suggest that the alteration of hormonal and metabolic environment during fetal and neonatal development can contribute to development of metabolic syndrome in adulthood. In this paper, we investigated the impact of maternal high-fat (HF) diet on hypothalamic leptin sensitivity and body weight gain of offspring. Adult Wistar female rats received a HF or a control normal-fat (C) diet for 6 wk before gestation until the end of the suckling period. After weaning, pups received either C or HF diet during 6 wk. Body weight gain and metabolic and endocrine parameters were measured in the eight groups of rats formed according to a postweaning diet, maternal diet, and gender. To evaluate hypothalamic leptin sensitivity in each group, STAT-3 phosphorylation was measured in response to leptin or saline intraperitoneal bolus. Pups exhibited similar body weights at birth, but at weaning, those born to HF dams weighed significantly less (-12%) than those born to C dams. When given the HF diet, males and females born to HF dams exhibited smaller body weight and feed efficiency than those born to C dams, suggesting increased energy expenditure programmed by the maternal HF diet. Thus, maternal HF feeding could be protective against adverse effects of the HF diet as observed in male offspring of control dams: overweight (+17%) with hyperleptinemia and hyperinsulinemia. Furthermore, offspring of HF dams fed either C or HF diet exhibited an alteration in hypothalamic leptin-dependent STAT-3 phosphorylation. We conclude that maternal high-fat diet programs a hypothalamic leptin resistance in offspring, which, however, fails to increase the body weight gain until adulthood.  相似文献   
678.
Cryptosporidium species are apicomplexan protozoans that are found worldwide. These parasites constitute a large risk to human and animal health. They cause self-limited diarrhea in immunocompetent hosts and a life-threatening disease in immunocompromised hosts. Interestingly, Cryptosporidium parvum has been related to digestive carcinogenesis in humans. Consistent with a potential tumorigenic role of this parasite, in an original reproducible animal model of chronic cryptosporidiosis based on dexamethasone-treated or untreated adult SCID mice, we formerly reported that C. parvum (strains of animal and human origin) is able to induce digestive adenocarcinoma even in infections induced with very low inoculum. The aim of this study was to further characterize this animal model and to explore metabolic pathways potentially involved in the development of C. parvum-induced ileo-caecal oncogenesis. We searched for alterations in genes or proteins commonly involved in cell cycle, differentiation or cell migration, such as β-catenin, Apc, E-cadherin, Kras and p53. After infection of animals with C. parvum we demonstrated immunohistochemical abnormal localization of Wnt signaling pathway components and p53. Mutations in the selected loci of studied genes were not found after high-throughput sequencing. Furthermore, alterations in the ultrastructure of adherens junctions of the ileo-caecal neoplastic epithelia of C. parvum-infected mice were recorded using transmission electron microscopy. In conclusion, we found for the first time that the Wnt signaling pathway, and particularly the cytoskeleton network, seems to be pivotal for the development of the C. parvum-induced neoplastic process and cell migration of transformed cells. Furthermore, this model is a valuable tool in understanding the host-pathogen interactions associated with the intricate infection process of this parasite, which is able to modulate host cytoskeleton activities and several host-cell biological processes and remains a significant cause of infection worldwide.KEY WORDS: SCID mouse model, Cryptosporidiosis, Wnt pathway, Cytoskeleton, Digestive cancer  相似文献   
679.
Kallikreins have been implicated in carcinogenesis and are promising biomarkers for the diagnosis and follow-up of various cancers. To evaluate the functions and clinical interest of kallikreins, it is important to be able to produce them as recombinant proteins. Here we summarize the various strategies used to produce kallikreins, emphasizing their advantages and limitations. We also describe an approach to achieve high-level production of kallikreins, such as hK6, with correct folding and activity, combining an expression system with targeted transgene integration and an efficient cultivation device to increase yield, the CELLine bioreactor. This novel method for recombinant kallikrein production will be useful to study their bio-pathological functions and to develop anti-bodies.  相似文献   
680.
Using biochemical and imaging approaches, we examined the postendocytotic fate of the complex formed by human choriogonadotropin (hCG) and a constitutively active mutant of the human lutropin receptor (hLHR-L457R) found in a boy with precocious puberty and Leydig cell hyperplasia. After internalization, some of the complex formed by the hLHR-wild type (hLHR-wt) and hCG recycles to the cell surface, and some is found in lysosomes where the hormone is degraded. In contrast, the complex formed by the hLHR-L457R and hCG is not routed to the lysosomes, most of it is recycled to the cell surface and hormone degradation is barely detectable. For both, hLHR-wt and -L457R, there is an hCG-induced loss of cell surface receptors that accompanies internalization but this loss cannot be prevented by leupeptin. The removal of recycling motifs of the hLHR by truncation of the C-terminal tail at residue 682 greatly enhances the lysosomal accumulation of the hormone-receptor complexes formed by the hLHR-wt or the L457R mutant, the degradation of the internalized hormone, and the loss of cell surface receptors. The degradation of the hormone internalized by these mutants as well as the loss of cell surface receptors is largely prevented by leupeptin. These results highlight a previously unrecognized complexity in the postendocytotic trafficking of the hLHR and document a clear difference between the properties of the constitutively active mutant and the agonist-activated hLHR-wt. This lack of lysosomal degradation of the L457R mutant could contribute to its constitutive activity by prolonging the duration of signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号