首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   13篇
  2024年   1篇
  2021年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   15篇
  2014年   14篇
  2013年   12篇
  2012年   19篇
  2011年   18篇
  2010年   11篇
  2009年   8篇
  2008年   13篇
  2007年   12篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   9篇
  2000年   10篇
  1999年   10篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   8篇
  1991年   6篇
  1990年   8篇
  1989年   3篇
  1988年   8篇
  1987年   1篇
  1986年   7篇
  1985年   3篇
  1981年   1篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
排序方式: 共有251条查询结果,搜索用时 31 毫秒
61.
The cleavage of bovine collagen I by neutrophil collagenase MMP-8 has been followed at pH 7.4, 37 degrees C. The behavior of the whole enzyme molecule (whMMP-8), displaying both the catalytic domain and the hemopexin-like domain, has been compared under the same experimental conditions with that of the catalytic domain only. The main observation is that whMMP-8 cleaves bovine collagen I only at a single specific site, as already reported by many others (Mallya, S. K., Mookhtiar, K. A., Gao, Y., Brew, K., Dioszegi, M., Birkedal-Hansen, H., and van Wart, H. E. (1990) Biochemistry 29, 10628-10634; Kn?uper, V., Osthues, A., DeClerk, Y. A., Langley, K. A., Bl?ser, J., and Tschesche, H. (1993) Biochem. J. 291, 847-854; Marini, S., Fasciglione, G. F., De Sanctis, G., D'Alessio, S., Politi, V., and Coletta, M. (2000) J. Biol. Chem. 275, 18657-18663), whereas the catalytic domain lacks this specificity and cleaves the collagen molecule at multiple sites. Furthermore, a meaningful difference is observed for the cleavage features displayed by two forms of the catalytic domain, which differ for the N terminus resulting from the activation process (i.e. the former Met(80) of the proenzyme (MetMMP-8) and the former Phe(79) of the proenzyme (PheMMP-8)). Thus, the PheMMP-8 species is characterized by a much faster k(cat)/K(m), fully attributable to a lower K(m), suggesting that the conformation of the catalytic domain, induced by the insertion of this N-terminal residue in a specific pocket (Reinemer, P., Grams, F., Huber, R., Kleine, T., Schnierer, S., Piper, M., Tschesche, H., and Bode, W. (1994) FEBS Lett. 338, 227-233), brings about a better, although less discriminatory, recognition process of cleavage site(s) on bovine collagen I.  相似文献   
62.
Resonance Raman and infrared spectra and the CO dissociation rates (k(off)) were measured in Coprinus cinereus peroxidase (CIP) and several mutants in the heme binding pocket. These mutants included the Asp245Asn, Arg51Leu, Arg51Gln, Arg51Asn, Arg51Lys, Phe54Trp, and Phe54Val mutants. Binding of CO to CIP produced different CO adducts at pH 6 and 10. At pH 6, the bound CO is H-bonded to the protonated distal His55 residue, whereas at alkaline pH, the vibrational signatures and the rate of CO dissociation indicate a distal side which is more open or flexible than in other plant peroxidases. The distal Arg51 residue is important in determining the rate of dissociation in the acid form, increasing by 8-17-fold in the Arg51 mutants compared to that for the wild-type protein. Replacement of the distal Phe with Trp created a new acid form characterized by vibrational frequencies and k(off) values very similar to those of cytochrome c peroxidase.  相似文献   
63.
64.
In a previous study we have shown that bringing horseradish peroxidase to pH 3.0 induces a spectroscopic transition (G. Smulevich et al., Biochemistry 36 (1997) 640). We have extended the investigation on this pH-linked conformational change to different experimental conditions, such as (i) in phosphate alone, (ii) in HCl alone and (iii) in phosphate + NaCl. The data obtained allow a number of conclusions to be drawn, namely: (a) the exposure to pH 3.0 under all conditions brings about an alteration of the distal portion of the heme pocket, leading to the rapid formation of a hexa-coordinated species; (b) only in the presence of phosphate is the hexa-coordination followed by a slow cleavage (or severe weakening) of the proximal Fe-His bond, and (c) the rate of this second process is speeded up in the presence of Cl- ions. Such observations underline the presence of a communication pathway between the two opposite sides of the heme pocket, such that any alteration of the structural arrangement on one side of the heme cavity is transmitted to the other, inducing a corresponding conformational change.  相似文献   
65.
Differences in color patterns have been the most used feature in describing cichlid species belonging to genus Petrotilapia from Lake Malawi. In this study, we quantified morphological variation in body shape within and among three coexisting Petrotilapia species using landmark-based geometric morphometric methods. Statistic analyses revealed significant body shape differences among species but not between sexes. Post hoc multiple comparisons based on Mahalanobis distances revealed that P. nigra was significantly different from P. genalutea and Petrotilapia sp., whereas the latter two were not significantly different. The splines generated showed that the most pronounced variation was in the head region, in which P. nigra had a relatively longer and deeper head than the other two. The most clear-cut distinction was in gape length; P. genalutea had the longest gape, followed by Petrotilapia sp., whereas P. nigra had the shortest gape. Body depth was shallower in P. nigra than the others. When comparing sexes by their centroid size, ANOVA revealed that males were bigger than females. Therefore, we conclude that color is not the only feature that can distinguish these congeners. We discuss the observed sexual dimorphism in terms of sexual selection and relate morphological variation among species to feeding behavior, which may help explain their coexistence in nature.  相似文献   
66.
Truncated hemoglobins (trHb's) form a family of low molecular weight O2 binding hemoproteins distributed in eubacteria, protozoa, and plants. TrHb's branch in a distinct clade within the hemoglobin (Hb) superfamily. A unique globin gene has recently been identified from the complete genome sequence of Mycobacterium leprae that is predicted to encode a trHb (M. leprae trHbO). Sequence comparison and modelling considerations indicate that monomeric M. leprae trHbO has structural features typical of trHb's, such as 20-40 fewer residues than conventional globin chains, Gly-based sequence consensus motifs, likely assembling into a 2-on-2 alpha-helical sandwich fold, and hydrophobic residues recognized to build up the protein matrix ligand diffusion tunnel. The ferrous heme iron atom of deoxygenated M. leprae trHbO appears to be hexacoordinated, like in Arabidopsis thaliana trHbO-3 (A. thaliana trHbO-3). Accordingly, the value of the second-order rate constant for M. leprae trHbO carbonylation (7.3 x 10(3) M(-1) s(-1)) is similar to that observed for A. thaliana trHbO-3 (1.4 x 10(4) M(-1) s(-1)) and turns out to be lower than that reported for carbon monoxide binding to pentacoordinated Mycobacterium tuberculosis trHbN (6.7 x 10(6) M(-1) s(-1)). The lower reactivity of M. leprae trHbO as compared to M. tuberculosis trHbN might be related to the higher susceptibility of the leprosy bacillus to toxic nitrogen and oxygen species produced by phagocytic cells.  相似文献   
67.
The agglutinability mediated by concanavalin A has been studied in the zona-free mouse oocyte before and after fertilization or treatment with inhibitors of protein synthesis. At lectin concentrations of 10 μg/ml ot higher the zygote is clearly more agglutinable than the unfertilized oocyte. Treatment with 10 μg/ml of cycloheximide or puromycin, which causes parthenogenetic activation, greatly increases the agglutinability of the unfertilized oocyte; the agglutinability of the zygote and of the early blastocyst is not increased by such treatment. The possibility is discussed that the repression of cell division requires the synthesis of unstable protein molecules of the cell surface which are also involved in lectinmediated agglutinability.  相似文献   
68.
Studies of CO ligand binding revealed that two protein states with different ligand affinities exist in the protoglobin from Methanosarcina acetivorans (in MaPgb*, residue Cys(E20)101 was mutated to Ser). The switch between the two states occurs upon the ligation of MaPgb*. In this work, site-directed mutagenesis was used to explore the role of selected amino acids in ligand sensing and stabilization and in affecting the equilibrium between the “more reactive” and “less reactive” conformational states of MaPgb*. A combination of experimental data obtained from electronic and resonance Raman absorption spectra, CO ligand-binding kinetics, and X-ray crystallography was employed. Three amino acids were assigned a critical role: Trp(60)B9, Tyr(61)B10, and Phe(93)E11. Trp(60)B9 and Tyr(61)B10 are involved in ligand stabilization in the distal heme pocket; the strength of their interaction was reflected by the spectra of the CO-ligated MaPgb* and by the CO dissociation rate constants. In contrast, Phe(93)E11 is a key player in sensing the heme-bound ligand and promotes the rotation of the Trp(60)B9 side chain, thus favoring ligand stabilization. Although the structural bases of the fast CO binding rate constant of MaPgb* are still unclear, Trp(60)B9, Tyr(61)B10, and Phe(93)E11 play a role in regulating heme/ligand affinity.  相似文献   
69.
Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels.  相似文献   
70.
Multimeric globins (e.g., hemoglobin) are considered to be the prototypes of allosteric enzymes, whereas monomeric globins (e.g., myoglobin; Mb) usually are assumed to be non-allosteric. However, the modulation of the functional properties of monomeric globins by non-covalent (or allosteric) and covalent modifications casts doubts on this general assumption. Here, we report examples referable to these two extreme mechanisms modulating the reactivity of three mammalian monomeric globins. Sperm whale Mb, which acts as a reserve supply of O2 and facilitates the O2 flux within a myocyte, displays the allosteric modulation of the O2 affinity on lactate, an obligatory product of glycolysis under anaerobic conditions, thus facilitating O2 diffusion to the mitochondria in supporting oxidative phosphorylation. Human neuroglobin (NGB), which appears to protect neurons from hypoxia in vitro and in vivo, undergoes hypoxia-dependent phosphorylation (i.e., covalent modulation) affecting the coordination equilibrium of the heme-Fe atom and, in turn, the heme-protein reactivity. This facilitates heme-Fe-ligand binding and enhances the rate of anaerobic nitrite reduction to form NO, thus contributing to cellular adaptation to hypoxia. The reactivity of human cytoglobin (CYGB), which has been postulated to protect cells against oxidative stress, depends on both non-covalent and covalent mechanisms. In fact, the heme reactivity of CYGB depends on the lipid, such as oleate, binding which stabilizes the penta-coordination geometry of the heme-Fe atom. Lastly, the reactivity of NGB and CYGB is modulated by the redox state of the intramolecular CysCD7/CysD5 and CysB2/CysE9 residue pairs, respectively, affecting the heme-Fe atom coordination state. In conclusion, the modulation of monomeric globins reactivity by non-covalent and covalent modifications appears a very widespread phenomenon, opening new perspectives in cell survival and protection. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号