首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   4篇
  2021年   3篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   7篇
  2012年   3篇
  2011年   9篇
  2010年   12篇
  2009年   10篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有110条查询结果,搜索用时 46 毫秒
91.

Background  

DNA methylation has been shown to play an important role in the silencing of tumor suppressor genes in various tumor types. In order to have a system-wide understanding of the methylation changes that occur in tumors, we have developed a differential methylation hybridization (DMH) protocol that can simultaneously assay the methylation status of all known CpG islands (CGIs) using microarray technologies. A large percentage of signals obtained from microarrays can be attributed to various measurable and unmeasurable confounding factors unrelated to the biological question at hand. In order to correct the bias due to noise, we first implemented a quantile regression model, with a quantile level equal to 75%, to identify hypermethylated CGIs in an earlier work. As a proof of concept, we applied this model to methylation microarray data generated from breast cancer cell lines. However, we were unsure whether 75% was the best quantile level for identifying hypermethylated CGIs. In this paper, we attempt to determine which quantile level should be used to identify hypermethylated CGIs and their associated genes.  相似文献   
92.
IntroductionMorning stiffness is assessed daily in the diagnostic process of arthralgia and arthritis, but large-scale studies on the discriminative ability are absent. This study explored the diagnostic value of morning stiffness in 5,202 arthralgia and arthritis patients and the prognostic value in early rheumatoid arthritis (RA).MethodsIn arthralgia patients referred to the Early Arthritis Recognition Clinics (EARC) of Leiden (n = 807) and Groningen (n = 481) or included in the Rotterdam Early Arthritis Cohort (REACH) study (n = 353), the associations (cross-sectional analyses) between morning stiffness and presence of arthritis at physical examination were studied. In early arthritis patients, included in the Leiden Early Arthritis Clinic (EAC) (n = 2,748) and Evaluation et Suivi de POlyarthrites Indifférenciées Récentes (ESPOIR) (n = 813), associations with fulfilling the 2010-RA criteria after one year were assessed. In 2010-RA patients included in the EAC (n = 1,140) and ESPOIR (n = 677), association with the long-term outcomes of disease-modifying antirheumatic drug (DMARD)-free sustained remission and radiological progression were determined. Morning stiffness was defined as a duration ≥60 minutes; sensitivity analyses were performed for other definitions.ResultsIn arthralgia, morning stiffness (≥60 minutes) associated with the presence of arthritis; Leiden EARC odds ratio (OR) 1.49 (95% CI 1.001 to 2.20), Groningen EARC OR 2.21 (1.33 to 3.69) and REACH OR 1.55 (0.97 to 2.47) but the areas under the receiver operating characteristic curve (AUCs) were low (0.52, 0.57, 0.54). In early arthritis, morning stiffness was associated with 2010-RA independent of other predictors (Leiden EAC OR 1.72 (95% CI 1.31 to 2.25, AUC 0.68), ESPOIR OR 1.68 (1.03 to 2.74, AUC 0.64)). Duration of ≥30 minutes provided optimal discrimination for RA in early arthritis. Morning stiffness was not associated with radiological progression or DMARD-free sustained remission.ConclusionsMorning stiffness in arthralgia and early arthritis is associated with arthritis and RA respectively. This supports the incorporation of morning stiffness in the diagnostic process.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0616-3) contains supplementary material, which is available to authorized users.  相似文献   
93.
Transposable elements of the mariner family are widespread among insects and other invertebrates, and initial analyses of their relationships indicated frequent occurrence of horizontal transfers between hosts. A specific PCR assay was used to screen for additional members of the irritans subfamily of mariners in more than 400 arthropod species. Phylogenetic analysis of cloned PCR fragments indicated that relatively recent horizontal transfers had occurred into the lineages of a fruit fly Drosophila ananassae, the horn fly Haematobia irritans, the African malaria vector mosquito Anopheles gambiae, and a green lacewing Chrysoperla plorabunda. Genomic dot-blot analysis revealed that the copy number in these species varies widely, from about 17,000 copies in the horn fly to three copies in D. ananassae. Multiple copies were sequenced from genomic clones from each of these species and four others with related elements. These sequences confirmed the PCR results, revealing extremely similar elements in each of these four species (greater than 88% DNA and 95% amino acid identity). In particular, the consensus sequence of the transposase gene of the horn fly elements differs by just two base pairs out of 1,044 from that of the lacewing elements. The mosquito lineage has diverged from the other Diptera for over 200 Myr, and the neuropteran last shared a common ancestor with them more than 265 Myr ago, so this high similarity implies that these transposons recently transferred horizontally into each lineage. Their presence in only the closest relatives in at least the lacewing lineage supports this hypothesis. Such horizontal transfers provide an explanation for the evolutionary persistence and widespread distribution of mariner transposons. We propose that the ability to transfer horizontally to new hosts before extinction by mutation in the current host constitutes the primary selective constraint maintaining the sequence conservation of mariners and perhaps other DNA-mediated elements.   相似文献   
94.
Kenaf (Hibiscus cannabinus L.) forage potential can be enhanced through its regrowth capacity and higher production in narrow rows. A field experiment was conducted in Matamoros, Coahuila, Mexico, during 2 growing seasons (2004 and 2005) to study the effects of plant height and row spacing on kenaf forage potential with multiple harvests. This study evaluated the effects of (1) 2 plant heights at cutting (1.0-1.2 m and 1.8-2.0 m) and (2) 4 inter row spacings (0.19, 0.38, 0.57 and 0.76 m) using a 2 x 4 factorial arrangement of treatments in a completely randomized block design with 4 replications. Dry matter (DM) and crude protein (CP) yields, DM partitioning, neutral detergent fiber (NDF) and CP concentrations were determined. Heights at cutting × row spacing interactions were not significant for the monitored variables (p>0.05). Kenaf response to treatments was only relevant for main effects (p≤0.05). Row spacing and plant height affected DM and CP yields (p≤0.05), whereas only plant height affected chemical composition and DM partitioning (p≤0.05). Dry matter (17.0%-26.0%), and CP (12.4%-15.6%) yields were higher (p≤0.05) when plant heights had reached 1.8 to 2.0 m. Row spacing reduction from 0.76 m to 0.38 and 0.19 m increased DM yield (20.4-33.4%) and CP yield (24.2-38.5%) (p≤0.05). Kenaf forage potential increases when planted in narrow rows and harvested 2 or 3 times during the growing season.  相似文献   
95.

Background  

The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs). In the present study, nuclear magnetic resonance (NMR) was used to map the binding site(s) of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction.  相似文献   
96.
In skeletal muscle, the L-type voltage-gated Ca2+ channel (1,4-dihydropyridine receptor) serves as the voltage sensor for excitation-contraction (EC) coupling. In this study, we examined the effects of Rem, a member of the RGK family of Ras-related monomeric GTP-binding proteins, on the function of the skeletal muscle L-type Ca2+ channel. EC coupling was found to be weakened in myotubes expressing Rem tagged with enhanced yellow fluorescent protein (YFP-Rem), as assayed by electrically evoked contractions and myoplasmic Ca2+ transients. This impaired EC coupling was not a consequence of altered function of the type 1 ryanodine receptor, or of reduced Ca2+ stores, since the application of 4-chloro-m-cresol, a direct type 1 ryanodine receptor activator, elicited myoplasmic Ca2+ release in YFP-Rem-expressing myotubes that was not distinguishable from that in control myotubes. However, YFP-Rem reduced the magnitude of L-type Ca2+ current by ∼75% and produced a concomitant reduction in membrane-bound charge movements. Thus, our results indicate that Rem negatively regulates skeletal muscle EC coupling by reducing the number of functional L-type Ca2+ channels in the plasma membrane.  相似文献   
97.
98.
Sequence analysis of the human genome permitted cloning of five Ca(2+)-channel beta(2) splice variants (beta(2a)-beta(2e)) that differed only in their proximal amino-termini. The functional consequences of such beta(2)-subunit diversity were explored in recombinant L-type channels reconstituted in HEK 293 cells. Beta(2a) and beta(2e) targeted autonomously to the plasma membrane, whereas beta(2b)-beta(2d) localized to the cytosol when expressed in HEK 293 cells. The pattern of modulation of L-type channel voltage-dependent inactivation gating correlated with the subcellular localization of the component beta(2) variant-membrane-bound beta(2a) and beta(2e) subunits conferred slow(er) channel inactivation kinetics and displayed a smaller fraction of channels recovering from inactivation with fast kinetics, compared to beta(2b)-beta(2d) channels. The varying effects of beta(2) subunits on inactivation gating were accounted for by a quantitative model in which L-type channels reversibly distributed between fast and slow forms of voltage-dependent inactivation-membrane-bound beta(2) subunits substantially decreased the steady-state fraction of fast inactivating channels. Finally, the beta(2) variants also had distinctive effects on L-type channel steady-state activation gating, as revealed by differences in the waveforms of tail-activation (G-V) curves, and conferred differing degrees of prepulse facilitation to the channel. Our results predict important physiological consequences arising from subtle changes in Ca(2+)-channel beta(2)-subunit structure due to alternative splicing and emphasize the utility of splice variants in probing structure-function mechanisms.  相似文献   
99.

Background

The finite element method (FEM) is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures) of interest (ROIs) may be irregular and fuzzy.

Methods

A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements.

Results

The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues.

Conclusion

The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information.
  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号