全文获取类型
收费全文 | 3206篇 |
免费 | 493篇 |
专业分类
3699篇 |
出版年
2021年 | 40篇 |
2019年 | 30篇 |
2018年 | 51篇 |
2016年 | 47篇 |
2015年 | 78篇 |
2014年 | 107篇 |
2013年 | 124篇 |
2012年 | 127篇 |
2011年 | 142篇 |
2010年 | 90篇 |
2009年 | 72篇 |
2008年 | 122篇 |
2007年 | 138篇 |
2006年 | 103篇 |
2005年 | 123篇 |
2004年 | 106篇 |
2003年 | 126篇 |
2002年 | 106篇 |
2001年 | 88篇 |
2000年 | 90篇 |
1999年 | 83篇 |
1998年 | 52篇 |
1997年 | 33篇 |
1996年 | 38篇 |
1995年 | 48篇 |
1994年 | 48篇 |
1992年 | 60篇 |
1991年 | 52篇 |
1990年 | 71篇 |
1989年 | 75篇 |
1988年 | 51篇 |
1987年 | 68篇 |
1986年 | 76篇 |
1985年 | 56篇 |
1984年 | 64篇 |
1983年 | 45篇 |
1982年 | 52篇 |
1981年 | 33篇 |
1980年 | 36篇 |
1979年 | 41篇 |
1977年 | 35篇 |
1975年 | 31篇 |
1974年 | 47篇 |
1973年 | 41篇 |
1972年 | 37篇 |
1971年 | 36篇 |
1970年 | 29篇 |
1969年 | 42篇 |
1968年 | 32篇 |
1967年 | 33篇 |
排序方式: 共有3699条查询结果,搜索用时 10 毫秒
971.
The 190-kDa multidrug resistance protein MRP1 (ABCC1) is a polytopic transmembrane protein belonging to the ATP-binding cassette transporter superfamily. In addition to conferring resistance to various antineoplastic agents, MRP1 is a transporter of conjugated organic anions, including the cysteinyl leukotriene C(4) (LTC(4)). We previously characterized the ATPase activity of reconstituted immunoaffinity-purified native MRP1 and showed it could be stimulated by its organic anion substrates (Mao, Q., Leslie, E. M., Deeley, R. G., and Cole, S. P. C. (1999) Biochim. Biophys. Acta 1461, 69-82). Here we show that purified reconstituted MRP1 is also capable of active transport of its substrates. Thus LTC(4) uptake by MRP1 proteoliposomes was osmotically sensitive and could be inhibited by two MRP1-specific monoclonal antibodies. LTC(4) uptake was also markedly reduced by the competitive inhibitor, S-decyl-glutathione, as well as by the MRP1 substrates 17 beta-estradiol 17-beta-(d-glucuronide), oxidized glutathione, and vincristine in the presence of reduced glutathione. The K(m) for ATP and LTC(4) were 357 +/- 184 microm and 366 +/- 38 nm, respectively, and 2.14 +/- 0.75 microm for 17 beta-estradiol 17-beta-(d-glucuronide). Transport of vincristine required the presence of both ATP and GSH. Conversely, GSH transport was stimulated by vincristine and verapamil. Our data represent the first reconstitution of transport competent purified native MRP1 and confirm that MRP1 is an efflux pump, which can transport conjugated organic anions and co-transport vincristine together with GSH. 相似文献
972.
Halfter W Dong S Schurer B Osanger A Schneider W Ruegg M Cole GJ 《Developmental biology》2000,220(2):111-128
To study the biology of basal laminae in the developing nervous system the protein composition of the embryonic retinal basal lamina was investigated, the site of synthesis of its proteins in the eye was determined, and basal lamina assembly was studied in vivo in two assay systems. Laminin, nidogen, agrin, collagen IV, and XVIII are major constituents of the retinal basal lamina. However, only agrin is synthesized by the retina, whereas the other matrix constituents originate from cells of the ciliary body, the lens, or the optic disc. The synthesis from extraretinal tissues infers that the retinal basal lamina proteins must be shed from their tissues of origin into the vitreous body and from there bind to receptor proteins provided by the retinal neuroepithelium. The fact that all proteins typical for the retinal basal lamina are abundant in the vitreous body and a new basal lamina is only formed when the vitreous body was directly adjacent to the retina is consistent with the contention of the vitreous body having a function in retinal basal lamina formation. Basal lamina assembly was also studied after disrupting the retinal basal lamina by intraocular injection of collagenase. The basal lamina regenerated after chasing the collagenase with Matrigel, which served as a collagenase inhibitor. The basal lamina was reconstituted within 6 h. However, the regenerated basal lamina was located deeper in the retina than normal by reconstituting along the retracted neuroepithelial endfeet demonstrating that these endfeet are the preferred site of basal lamina assembly. 相似文献
973.
Cystic fibrosis (CF) airway epithelial cells have a reduced mass of ether-linked diacylglycerols which might alter protein kinase C (PKC)-regulated Cl secretion. PKC regulation of basolateral Na-K-2Cl cotransport (NKCC1) was investigated in CF nasal polyp epithelial cells and a CF/T43 cell line to ascertain whether PKC signaling was altered in CF. NKCC1 was detected as bumetanide-sensitive (86)Rb influx. Methoxamine, a alpha(1)-adrenergic agonist, increased PKC activity in cytosol and a particulate fraction for a prolonged time period, as predicted from previous studies on the generation of diglycerides induced with methoxamine. Short-term stimulation of CF/T43 cells for 40 s promoted a shift in PKC-delta and -zeta to a particulate fraction, increased activity of immune complexes of cytosolic PKC-delta and of particulate PKC-zeta and increased activity of NKCC1. Pretreatment with antisense oligonucleotide to PKC-delta blocked methoxamine-stimulated PKC-delta activity, reduced PKC-delta mass by 61.4%, and prevented methoxamine-stimulated activity of NKCC1. Sense and missense oligonucleotide to PKC-delta and antisense oligonucleotide to PKC-zeta did not alter expression of PKC-delta or the effects of methoxamine. These results demonstrate that PKC-delta-dependent activation of NKCC1 is preserved in CF cells and suggest that regulation of NKCC1 is independent of low ether-linked diglyceride mass. 相似文献
974.
975.
976.
De Wever H Cole JR Fettig MR Hogan DA Tiedje JM 《Applied and environmental microbiology》2000,66(6):2297-2301
A bacterium able to grow via reductive dechlorination of trichloroacetate was isolated from anaerobic soil enrichments. The isolate, designated strain K1, is a member of the delta proteobacteria and is related to other known sulfur and ferric iron reducers. In anaerobic mineral media supplemented with acetate and trichloroacetate, its doubling time was 6 h. Alternative electron donor and acceptors were acetoin and sulfur or fumarate, respectively. Trichloroacetate dehalogenation activity was constitutively present, and the dechlorination product was dichloroacetate and chloride. Trichloroacetate conversion seemed to be coupled to a novel sulfur-sulfide redox cycle, which shuttled electrons from acetate oxidation to trichloroacetate reduction. In view of its unique physiological characteristics, the name Trichlorobacter thiogenes is suggested for strain K1. 相似文献
977.
Metal-substituted protoporphyrin IXs (Cr(III)PPIX (1), Co(III)PPIX (2), Mn(III)PPIX (3), Cu(II)PPIX (4), Mg(II)PPIX (5), Zn(II)PPIX (6), and Sn(IV)PPIX (7)) act as inhibitors to beta-hematin (hemozoin) formation, a critical detoxification biopolymer of malarial parasites. The central metal ion plays a significant role in the efficacy of the metalloprotoporphyrins to inhibit beta-hematin formation. The efficacy of these compounds correlates well with the water exchange rate for the octahedral aqua complexes of the porphyrin's central metal ion. Under these in vitro reaction conditions, metalloporphyrins 5, 6 and 7 are as much as six times more efficacious than the free ligand protoporphyrin IX in preventing beta-hematin formation and four times as efficacious as chloroquine, while metalloporphyrins 3 and 4 are three to four times more effective at preventing beta-hematin formation than the free protoporphyrin IX base. In contrast, the relatively exchange inert metalloporphyrins 1 and 2 are only as efficacious as the free ligand and only two-thirds as effective as chloroquine. Aggregation studies of the heme:MPPIX using UV-Vis and fluorescence spectroscopies are indicative of the formation of pi-pi hetero-metalloporphyrin assemblies. Thus, hemozoin inhibition is likely prevented by the formation of heme:MPPIX complexes through pi-stacking interactions. The ramifications of such hetero-metalloporphyrin assemblies, in the context of the emerging structural picture of hemozoin, are discussed. 相似文献
978.
979.
Organelles and plasma membrane domains appear to be transported along Reticulomyxa's microtubule cytoskeleton. Previously we demonstrated that organelle and cell surface transport share the same enzymatic properties and suggested that both are powered by the same cytoplasmic dynein. Motility analysis in Reticulomyxa is complicated by the fact that the microtubules also are motile and appear to "slide" bidirectionally throughout the network. We have utilized laser ablation to address this frame-of-reference problem as to how each transport component (microtubule sliding vs. organelle translocations) contributes to reactivated bidirectional translocation of organelles along the microtubule cytoskeleton. Laser ablation was used to cut microtubule bundles from lysed networks into 4-15-microm segments. After examining these reactivated cut fragments, it appears that the majority of organelles did not move relative to microtubule fragments, but remained attached to microtubules and moved as the microtubules slid. Microtubule sliding stops after 1-2 min and cannot be reactivated even when perfused with fresh ATP. Furthermore, once sliding stops, organelle transport also stops. Our findings indicate that the majority of Reticulomyxa pseudopodial organelles do not move along the surface of the microtubules, rather it is the sliding of the microtubules to which they are attached that moves them. 相似文献
980.
Palanichelvam K Cole AB Shababi M Schoelz JE 《Molecular plant-microbe interactions : MPMI》2000,13(11):1275-1279
Cauliflower mosaic virus strain W260 induces hypersensitive response (HR) in Nicotiana edwardsonii and systemic cell death in N. clevelandii. In contrast, the D4 strain of Cauliflower mosaic virus evades the host defenses in Nicotiana species; it induces chlorotic primary lesions and a systemic mosaic in both hosts. Previous studies with chimeric viruses had indicated that gene VI of W260 was responsible for elicitation of HR or cell death. To prove conclusively that W260 gene VI is responsible, we inserted gene VI of W260 and D4 into the Agrobacterium tumefaciens binary vector pKYLX7. Agroinfiltration of these constructs into the leaves of N. edwardsonii and N. clevelandii revealed that gene VI of W260 elicited HR in N. edwardsonii 4 to 5 days after infiltration and cell death in N. clevelandii approximately 9 to 12 days after infiltration. In contrast, gene VI of D4 did not elicit HR or cell death in either Nicotiana species. A frameshift mutation introduced into gene VI of W260 abolished its ability to elicit HR or cell death in both Nicotiana species, demonstrating that the elicitor is the gene VI protein. 相似文献