首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   33篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   21篇
  2012年   30篇
  2011年   24篇
  2010年   7篇
  2009年   5篇
  2008年   25篇
  2007年   10篇
  2006年   15篇
  2005年   5篇
  2004年   8篇
  2003年   13篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1997年   3篇
  1995年   5篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1981年   6篇
  1979年   8篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   8篇
  1974年   7篇
  1973年   3篇
  1972年   6篇
  1971年   2篇
  1970年   4篇
  1968年   3篇
  1935年   2篇
  1933年   2篇
排序方式: 共有357条查询结果,搜索用时 609 毫秒
81.
82.
Reconstruction of orbital wall fenestrations with polyglactin 910 film   总被引:1,自引:0,他引:1  
Medial orbital wall fenestrations were created bilaterally in 16 adult cats. The fenestrations were reconstructed with polyglactin 910 film, Dacron-reinforced silicone sheeting, or no implant. Polyglactin 910 was found to be well tolerated in this traumatized area of paranasal sinus bone and soft tissue and was totally absorbed in 4 months. Dacron-reinforced silicone sheeting induced a long-standing acute inflammatory reaction in a similar milieu. Partial osseus replacement of the orbital fenestrations occurred in all animals, but it was accompanied by distortion and erosion in apposition to the silicone sheeting. The study does not answer the question of whether orbital contour will be maintained on a long-term basis adjacent to a pneumatized sinus following reconstruction with a bioabsorbable implant.  相似文献   
83.
84.
Enterohemorrhagic Escherichia coli and related food and waterborne pathogens pose significant threats to human health. These attaching/effacing microbes infect the apical surface of intestinal epithelial cells (IEC), causing severe diarrheal disease. Colonizing the intestinal luminal surface helps segregate these microbes from most host inflammatory responses. Based on studies using Citrobacter rodentium, a related mouse pathogen, we speculate that hosts rely on immune-mediated changes in IEC, including goblet cells to defend against these pathogens. These changes include a CD4+ T cell-dependent increase in IEC proliferation to replace infected IEC, as well as altered production of the goblet cell-derived mucin Muc2. Another goblet cell mediator, REsistin-Like Molecule (RELM)-β is strongly induced within goblet cells during C. rodentium infection, and was detected in the stool as well as serum. Despite its dramatic induction, RELM-β’s role in host defense is unclear. Thus, wildtype and RELM-β gene deficient mice (Retnlb -/-) were orally infected with C. rodentium. While their C. rodentium burdens were only modestly elevated, infected Retnlb -/- mice suffered increased mortality and mucosal ulceration due to deep pathogen penetration of colonic crypts. Immunostaining for Ki67 and BrDU revealed Retnlb -/- mice were significantly impaired in infection-induced IEC hyper-proliferation. Interestingly, exposure to RELM-β did not directly increase IEC proliferation, rather RELM-β acted as a CD4+ T cell chemoattractant. Correspondingly, Retnlb -/- mice showed impaired CD4+ T cell recruitment to their infected colons, along with reduced production of interleukin (IL)-22, a multifunctional cytokine that directly increased IEC proliferation. Enema delivery of RELM-β to Retnlb -/- mice restored CD4+ T cell recruitment, concurrently increasing IL-22 levels and IEC proliferation, while reducing mucosal pathology. These findings demonstrate that RELM-β and goblet cells play an unexpected, yet critical role in recruiting CD4+ T cells to the colon to protect against an enteric pathogen, in part via the induction of increased IEC proliferation.  相似文献   
85.
Histone Nuclear Factor P (HINFP) is essential for expression of histone H4 genes. Ablation of Hinfp and consequential depletion of histones alter nucleosome spacing and cause stalled replication and DNA damage that ultimately result in genomic instability. Faithful replication and packaging of newly replicated DNA are required for normal cell cycle control and proliferation. The tumor suppressor protein p53, the guardian of the genome, controls multiple cell cycle checkpoints and its loss leads to cellular transformation. Here we addressed whether the absence of p53 impacts the outcomes/consequences of Hinfp-mediated histone H4 deficiency. We examined mouse embryonic fibroblasts lacking both Hinfp and p53. Our data revealed that the reduced histone H4 expression caused by depletion of Hinfp persists when p53 is also inactivated. Loss of p53 enhanced the abnormalities in nuclear shape and size (i.e. multi-lobed irregularly shaped nuclei) caused by Hinfp depletion and also altered the sub-nuclear organization of Histone Locus Bodies (HLBs). In addition to the polyploid phenotype resulting from deletion of either p53 or Hinfp, inactivation of both p53 and Hinfp increased mitotic defects and generated chromosomal fragility and susceptibility to DNA damage. Thus, our study conclusively establishes that simultaneous loss of both Hinfp and the p53 checkpoint is detrimental to normal cell growth and may predispose to cellular transformation.  相似文献   
86.
Huntington disease (HD) is one of several fatal neurodegenerative disorders associated with misfolded proteins. Here, we report a novel method for the sensitive detection of misfolded huntingtin (HTT) isolated from the brains of transgenic (Tg) mouse models of HD and humans with HD using an amyloid seeding assay (ASA), which is based on the propensity of misfolded proteins to act as a seed and shorten the nucleation-associated lag phase in the kinetics of amyloid formation in vitro. Using synthetic polyglutamine peptides as the substrate for amyloid formation, we found that partially purified misfolded HTT obtained from end-stage brain tissue of two Tg HD mouse models and brain tissue of post-mortem human HD patients was capable of specifically accelerating polyglutamine amyloid formation compared with unseeded reactions and controls. Alzheimer and prion disease brain tissues did not do so, demonstrating the specificity of the ASA. It is unclear whether early intermediates or later conformational species in the protein misfolding process act as seeds in the ASA for HD. However, we were able to detect misfolded protein in the brains of YAC128 mice early in disease pathogenesis (11 weeks of age), whereas large inclusion bodies have not been observed in the brains of these mice by histology until 78 weeks of age, much later in the pathogenic process. The sensitive detection of misfolded HTT protein early in the disease pathogenesis in the YAC128 Tg mouse model strengthens the argument for a causative role of protein misfolding in HD.  相似文献   
87.
Neurodegeneration in Huntington disease is described by neuronal loss in which the probability of cell death remains constant with time. However, the quantitative connection between the kinetics of cell death and the molecular mechanism initiating neurodegeneration remains unclear. One hypothesis is that nucleation of protein aggregates containing exon I fragments of the mutant huntingtin protein (mhttex1), which contains an expanded polyglutamine region in patients with the disease, is the explanation for the infrequent but steady occurrence of neuronal death, resulting in adult onset of the disease. Recent in vitro evidence suggests that sufficiently long polyglutamine peptides undergo a unimolecular conformational change to form a nucleus that seeds aggregation. Here we use this nucleation mechanism as the basis to derive a stochastic mathematical model describing the probability of aggregate formation in cells as a function of time and mhttex1 protein concentration, and validate the model experimentally. These findings suggest that therapeutic strategies for Huntington disease predicated on reducing the rate of mhttex1 aggregation need only make modest reductions in huntingtin expression level to substantially increase the delay time until aggregate formation.  相似文献   
88.
Studies were done to determine the role of the 17 alpha-hydroxylase in the conversion of 7 alpha-thiospironolactone (7 alpha-thio-SL) to a reactive metabolite causing the degradation of testicular cytochrome P-450. Incubation of guinea pig testicular microsomes with 7 alpha-thio-SL plus NADPH resulted in an approx. 70% decline in cytochrome P-450 content and even greater loss of 17 alpha-hydroxylase activity. Addition of the 17 alpha-hydroxylase inhibitor, SU-10'603, to the incubation medium prevented the degradation of P-450 by 7 alpha-thio-SL. Similarly, preincubation of testicular microsomes with anti-P-45017 alpha,lyase IgG to inhibit 17 alpha-hydroxylation, diminished the subsequent loss of P-450 caused by 7 alpha-thio-SL. The results indicate that the 17 alpha-hydroxylase catalyzes the conversion of 7 alpha-thio-SL to the reactive metabolite responsible for P-450 destruction. The accompanying loss of 17 alpha-hydroxylase activity supports the hypothesis that suicide inhibition is the mechanism involved.  相似文献   
89.
Melanoma progresses as a multistep process where the thickness of the lesion and depth of tumor invasion are the best prognostic indicators of clinical outcome. Degradation of the interstitial collagens in the extracellular matrix is an integral component of tumor invasion and metastasis, and much of this degradation is mediated by collagenase-1 (MMP-1), a member of the matrix metalloproteinase (MMP) family. MMP-1 levels increase during melanoma progression where they are associated with shorter disease-free survival. The Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) pathway is a major regulator of melanoma cell proliferation. Recently, BRAF has been identified as a common site of activating mutations, and, although many reports focus on its growth-promoting effects, this pathway has also been implicated in progression toward metastatic disease. In this study, we describe four melanoma cell lines that produce high levels of MMP-1 constitutively. In each cell line the Ras/Raf/MEK/ERK pathway is constitutively active and is the dominant pathway driving the production of MMP-1. Activation of this pathway arises due to either an activating mutation in BRAF (three cell lines) or autocrine fibroblast growth factor signaling (one cell line). Furthermore, blocking MEK/ERK activity inhibits melanoma cell proliferation and abrogates collagen degradation, thus decreasing their metastatic potential. Importantly, this inhibition of invasive behavior can occur in the absence of any detectable changes in cell proliferation and survival. Thus, constitutive activation of this MAPK pathway not only promotes the increased proliferation of melanoma cells but is also important for the acquisition of an invasive phenotype.  相似文献   
90.
A revised model of PP1-tautomycin (TM) complex suggests that this toxin does not bind in a conformation analogous to its structural cousin okadaic acid (OA), as has been assumed, but instead more resembles the mode of binding adopted by calyculin. This model rationalizes the unexpected potency of a truncated TM analogue lacking the bicyclic ketal common to TM and OA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号