全文获取类型
收费全文 | 148篇 |
免费 | 10篇 |
专业分类
158篇 |
出版年
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 3篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 6篇 |
2014年 | 5篇 |
2013年 | 6篇 |
2012年 | 10篇 |
2011年 | 10篇 |
2010年 | 11篇 |
2009年 | 3篇 |
2008年 | 4篇 |
2007年 | 3篇 |
2006年 | 7篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 5篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 7篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 3篇 |
1986年 | 5篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1973年 | 1篇 |
1972年 | 2篇 |
1970年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有158条查询结果,搜索用时 8 毫秒
151.
It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement. Here, we report that local and specific disruption of actin bundles from the growth cone peripheral domain induced repulsive growth cone turning. Meanwhile, dynamic microtubules within the peripheral domain were oriented into areas where actin bundles remained and were lost from areas where actin bundles disappeared. This resulted in directional microtubule extension leading to axon bending and growth cone turning. In addition, this local actin bundle loss coincided with localized growth cone collapse, as well as asymmetrical lamellipodial protrusion. Our results provide direct evidence, for the first time, that regional actin bundle reorganization can steer the growth cone by coordinating actin reorganization with microtubule dynamics. This suggests that actin bundles can be potential targets of signaling pathways downstream of guidance cues, providing a mechanism for coupling changes in leading edge actin with microtubules at the central domain during turning. 相似文献
152.
C S Cohan 《Journal of neurobiology》1990,21(3):400-413
The present experiments address the question of how stimulation parameters, which evoke action potentials in neuronal cell bodies, influence growth cone movements of different identified neurons. The motility of growth cones of Helisoma buccal neurons B19 and B4 was monitored while somata were stimulated simultaneously via an intracellular microelectrode. The findings show that the responses of growth cones of B19 and B4 contain components that are common as well as unique to each neuron. Whereas rates of growth cone advance were suppressed in a graded fashion by stimulus frequencies beyond a threshold of 2 s-1 for both neurons, B4 was more sensitive to electrical stimulation and exhibited a new response, namely, growth rates were enhanced during the poststimulation recovery period after stimulation at specific frequencies. Thus, electrical activity can result in enhancement as well as in inhibition of growth cone movement. Changes in number of filopodia on B19 and B4 were graded also, with B4 again displaying greater sensitivity. The frequency dependence of filopodia compared to growth rate changes was different and suggests a possible dissociation between filopodial activity and growth cone motility. Patterned electrical activity produced effects similar to constant stimulation for B19 growth cones, whereas it decreased the threshold frequency and eliminated the growth enhancement effect for B4. Taken together, these data demonstrate that the quantitative features of electrical activity as well as intrinsic properties of neurons both determine the growth cone response to changes in neuronal activity. 相似文献
153.
154.
Kevin D. Janni Charles R. Clement Neil A. Harriman Sarah Walshaw Dorothea Bedigian Wendy Applequist Robert J. Krueger Thomas E. Hemmerly Wendy Applequist Dale Stirling Wendy Applequist Neil A. Harriman Neil A. Harriman Dorothea Bedigian Dorothea Bedigian J. Anthony Abbott Joseph A. Weinstock Dan Cohan Kevin D. Janni Philip Busey Neil A. Harriman Neil A. Harriman 《Economic botany》2003,57(1):145-160
155.
The parotid and the principal and accessory submandibular glands of the little brown bat. Myotis lucifugus (Vespertilionidae), were examined using light microscopy and staining methods for mucosubstances. The parotid gland is a compound tubuloacinar seromucous gland. Parotid gland secretory cells contain both neutral and nonsulfated acidic mucosubstances. The principal and accessory submandibular glands are compound tubuloacinar mucus-secreting glands. They contain somewhat atypical mucus-secreting demilunar cells that often appear to be interspersed between mucous tubule cells. The mucous tubule cells in both the principal and accessory submandibular glands contain sulfonmucins. Demilunar cells of the principal submandibular gland contain moderate amounts of nonsulfated acidic mucosubstances, but the corresponding cells of the accessory submandibular gland contain considerable neutral mucosubstance with very little acid mucosubstance. Intercalated ducts composed of cuboidal or low columnar epithelial cells are present in all three glands. Striated ducts in all glands are composed of columnar cells whose apices bulge into the ductal lumina. Excretory ducts are composed of simple columnar epithelium, with occasional basal cells that suggest a possible pseudostratified nature. The cells of the excretory ducts also have bulging apices. All duct types contain apical cytoplasmic secretory material that is a periodic acid-Schiff positive, neutral mucosubstance. Ductal apical secretory material is more evident in intercalated and striated ducts than in excretory ducts. 相似文献
156.
R H Waldman P A Wigley FM Small 《Journal of immunology (Baltimore, Md. : 1950)》1970,105(6):1477-1483
157.
Ca2+ dynamics in neuronal growth cones: regulation and changing patterns of Ca2+ entry 总被引:3,自引:0,他引:3
Digital ratio imaging of Fura-2 fluorescence was used to determine spatially resolved dynamics of Ca2+ changes in neuronal growth cones from the molluscs, Helisoma and Aplysia. Time resolution was approximately 1 s and spatial resolution a few mm depending upon the thickness of the cell region examined. Isolated growth cones of Helisoma were shown to recover from large Ca2+ loads over a time course of minutes, therefore demonstrating Ca2+ regulation mechanisms not dependent on the rest of the cell. Ca2+ changes monitored during action potential discharge showed sharply defined spatial gradients within the growth cones, probably arising from clustering of voltage-gated Ca-channels in the surface membrane. The regions of peak concentration change appeared to shift from central regions to the growth cone periphery as the growth cones matured. There was a marked difference in soma Ca2+ changes produced by action potentials depending on whether or not the soma had sprouted neurites. Neurite-free somata showed large Ca2+ changes, whereas in somata that had recently sprouted neurites there were almost no changes for similar electrical stimulation. Measurements on growth cones of N1E115 neuroblastoma cells showed static distributions of Ca2+ similar to those in the molluscan neurons. 相似文献
158.
Interleukin-1 is a mucus secretagogue 总被引:2,自引:0,他引:2
Explant cultures of mouse duodenum were used to show that interleukin-1 (IL-1) causes release of mucus from epithelial goblet cells. Our experiments made use of a newly described enzyme-linked lectin assay (ELLA) which employs enzyme-conjugated soybean agglutinin to detect mucus glycoproteins secreted from explant cultures of mouse duodenum. Supernatants from cultures of lipopolysaccharide-stimulated peritoneal macrophages as well as partially purified rabbit alveolar macrophage-derived IL-1 and human rIL-1 beta all induced mucus release in a rapid and dose-dependent fashion. This observation may be important for investigating a link between the immune response and mucus hypersecretion from inflamed intestinal mucosa. 相似文献