首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   23篇
  255篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   9篇
  2017年   3篇
  2016年   1篇
  2015年   6篇
  2014年   8篇
  2013年   3篇
  2012年   11篇
  2011年   10篇
  2010年   3篇
  2009年   2篇
  2008年   15篇
  2007年   9篇
  2006年   14篇
  2005年   7篇
  2004年   16篇
  2003年   8篇
  2002年   11篇
  2001年   11篇
  2000年   10篇
  1999年   8篇
  1998年   12篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   6篇
  1977年   2篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
排序方式: 共有255条查询结果,搜索用时 0 毫秒
91.
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.  相似文献   
92.
93.
94.
The harvesting of solar radiation by purple photosynthetic bacteria is achieved by circular, integral membrane pigment-protein complexes. There are two main types of light-harvesting complex, termed LH2 and LH1, that function to absorb light energy and to transfer that energy rapidly and efficiently to the photochemical reaction centres where it is trapped. This mini-review describes our present understanding of the structure and function of the purple bacterial light-harvesting complexes.  相似文献   
95.
96.
Human alpha-galactosidase A (alpha-Gal A) is the lysosomal glycohydrolase that cleaves the terminal alpha-galactosyl moieties of various glycoconjugates. Overexpression of the enzyme in Chinese hamster ovary (CHO) cells results in high intracellular enzyme accumulation and the selective secretion of active enzyme. Structural analysis of the N -linked oligosaccharides of the intracellular and secreted glycoforms revealed that the secreted enzyme's oligosaccharides were remarkably heterogeneous, having high mannose (63%), complex (30%), and hybrid (5%) structures. The major high mannose oligosaccharides were Man5-7GlcNAc2 species. Approximately 40% of the high mannose and 30% of the hybrid oligosaccharides had phosphate monoester groups. The complex oligosaccharides were mono-, bi- , 2,4-tri-, 2,6-tri- and tetraantennary with or without core-region fucose, many of which had incomplete outer chains. Approximately 30% of the complex oligosaccharides were mono- or disialylated. Sialic acids were mostly N -acetylneuraminic acid and occurred exclusively in alpha2, 3-linkage. In contrast, the intracellular enzyme had only small amounts of complex chains (7.7%) and had predominantly high mannose oligosaccharides (92%), mostly Man5GlcNAc2 and smaller species, of which only 3% were phosphorylated. The complex oligosaccharides were fucosylated and had the same antennary structures as the secreted enzyme. Although most had mature outer chains, none were sialylated. Thus, the overexpression of human alpha-Gal A in CHO cells resulted in different oligosaccharide structures on the secreted and intracellular glycoforms, the highly heterogeneous secreted forms presumably due to the high level expression and impaired glycosylation in the trans- Golgi network, and the predominately Man5-7GlcNAc2 cellular glycoforms resulting from carbohydrate trimming in the lysosome.   相似文献   
97.
The absorbance, polarized absorbance and linear dichroism spectra of single crystals of the B800–850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050 taken at room (298 K) and low (85 K) temperatures are presented. The spectra are compared and contrasted with random phase solution spectra from the same complex. The single crystal spectra display a spectral narrowing at low temperatures in the BChl Qx (550–650 nm) and carotenoid (450–550 nm) regions similar to that observed from the random phase solution. The single crystal absorption spectra in the BChl Qy (750–900 nm) region are broader than the solution spectra and remain broad as the temperature is lowered. It is suggested that this broadening is the result of specific exciton interactions between the BChl chromophore Qy transition dipoles and is a molecular feature which occurs only in the crystalline complex.  相似文献   
98.
The bacterial reaction center absorbance change at 450 nm (A-450) assigned to an anionic semiquinone, has been suggested as a candidate for the reduced form of the primary electron acceptor in bacterial photosynthesis. In reaction centers of Rhodopseudomonas sphaeroides we have found kinetic discrepancies between the decay of A-450 and the recovery of photochemical competence. In addition, no proton uptake is measurable on the first turnover, although subsequent ones elicit one proton bound per electron. These results are taken to indicate that the acceptor reaction after a long dark period may be different for the first turnover than for subsequent ones. It is suggested that A-450 is still a likely candidate for the acceptor function but that in reaction centers, additional quinone may act as an adventitious primary acceptor when the "true" primary acceptor is reduced. Alternatively, the primary acceptor may act in a "ping-pong" fashion with respect to subsequent photoelectrons.  相似文献   
99.
The pigment content of a B800-850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed. The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800-850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band. The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.  相似文献   
100.
The photosynthetic membrane of the purple bacterium Rhodopseudomonas (Rps.) acidophila is composed of reaction centers (RCs) which are surrounded by closely connected light harvesting complexes (LH1) and peripheral light-harvesting complexes (LH2). Both LH1 and LH2 – which bind the antenna pigments between -, -heterodimers – form rings composed of an integer number of -, -subunits. Here we use the sigmoidicity of fluorescence induction curves to probe the excitonic connectivity of RCs in order to gain information on the structural arrangement of these LH complexes in the natural chromatophore membrane. The data exclude models of the Rps. acidophila photosynthetic unit that assume aggregates of RC-LH1 complexes or linear chains of RC-LH1 complexes to which LH2 complexes are attached on the periphery. Rather, they support the model suggested by Papiz et al. ((1996) Trends in Plant Science 1: 198–206) in which peripheral light-harvesting rings tightly surround each core complex (LH1-ring with the RC inside) circumferentially.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号