首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   103篇
  490篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   9篇
  2017年   6篇
  2016年   7篇
  2015年   16篇
  2014年   16篇
  2013年   23篇
  2012年   25篇
  2011年   25篇
  2010年   16篇
  2009年   21篇
  2008年   18篇
  2007年   24篇
  2006年   29篇
  2005年   23篇
  2004年   17篇
  2003年   13篇
  2002年   13篇
  2001年   11篇
  2000年   11篇
  1999年   9篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   8篇
  1994年   5篇
  1993年   13篇
  1992年   12篇
  1991年   7篇
  1990年   15篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1977年   3篇
  1976年   5篇
  1974年   4篇
  1973年   3篇
  1970年   3篇
  1969年   1篇
  1964年   1篇
排序方式: 共有490条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
35.
36.
Many of the events required for productive herpes simplex virus type 1 (HSV-1) infection occur within globular nuclear domains called replication compartments, whose formation appears to depend on interactions with cellular nuclear domains 10 (ND10). We have previously demonstrated that the formation of HSV-1 replication compartments involves progression through several stages, including the disruption of intact ND10 (stage I to stage II) and the formation of PML-associated prereplicative sites (stage III) and replication compartments (stage IV) (J. Burkham, D. M. Coen, and S. K. Weller, J. Virol. 72:10100-10107, 1998). In this paper, we show that some, but not all, PML isoforms are recruited to stage III foci and replication compartments. Genetic experiments showed that the recruitment of PML isoforms to stage III prereplicative sites and replication compartments requires the localization of the HSV-1 polymerase protein (UL30) to these foci but does not require polymerase catalytic activity. We also examined the stages of viral infection under conditions affecting ND10 integrity. Treatment with factors that increase the stability of ND10, arsenic trioxide and the proteasome inhibitor MG132, inhibited viral disruption of ND10, formation of replication compartments, and production of progeny virus. These results strengthen the previously described correlation between ND10 disruption and productive viral infection.  相似文献   
37.
The catalytic subunit, Pol, of herpes simplex virus DNA polymerase interacts via its extreme C terminus with the processivity subunit, UL42. This interaction is critical for viral replication and thus a potential target for antiviral drug action. To investigate the Pol-binding region on UL42, we engineered UL42 mutations but also used random peptide display to identify artificial ligands of the Pol C terminus. The latter approach selected ligands with homology to residues 171 to 176 of UL42. Substitution of glutamine 171 with alanine greatly impaired binding to Pol and stimulation of long-chain DNA synthesis by Pol, identifying this residue as crucial for subunit interactions. To study these interactions quantitatively, we used isothermal titration calorimetry and wild-type and mutant forms of Pol-derived peptides and UL42. Each of three peptides corresponding to either the last 36, 27, or 18 residues of Pol bound specifically to UL42 in a 1:1 complex with a dissociation constant of 1 to 2 microM. Thus, the last 18 residues suffice for most of the binding energy, which was due mainly to a change in enthalpy. Substitutions at positions corresponding to Pol residue 1228 or 1229 or at UL42 residue 171 abolished or greatly reduced binding. These residues participate in hydrogen bonds observed in the crystal structure of the C terminus of Pol bound to UL42. Thus, interruption of these few bonds is sufficient to disrupt the interaction, suggesting that small molecules targeting the relevant side chains could interfere with Pol-UL42 binding.  相似文献   
38.
Insulin exerts both NO-dependent vasodilator and endothelin-dependent vasoconstrictor effects on skeletal muscle arterioles. The intracellular enzymes 1-phosphatidylinositol 3-kinase (PI3-kinase) and Akt have been shown to mediate the vasodilator effects of insulin, but the signaling molecules involved in the vasoconstrictor effects of insulin in these arterioles are unknown. Our objective was to identify intracellular mediators of acute vasoconstrictor effects of insulin on skeletal muscle arterioles. Rat cremaster first-order arterioles (n=40) were isolated, and vasoreactivity to insulin was studied using a pressure myograph. Insulin induced dose-dependent vasoconstriction of skeletal muscle arterioles (up to -22 +/- 3% of basal diameter; P <0.05) during PI3-kinase inhibition with wortmannin (50 nmol/l). Insulin-induced vasoconstriction was abolished by inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) with PD-98059 (40 micromol/l). In addition, inhibition of ERK1/2 without PI3-kinase inhibition uncovered insulin-mediated vasodilatation in skeletal muscle arterioles (up to 37 +/- 10% of baseline diameter; P <0.05). Effects of insulin on ERK1/2 activation in arterioles were then investigated by Western blot analysis. Insulin induced a transient 2.4-fold increase in ERK1/2 phosphorylation (maximal at approximately 15 min) in skeletal muscle arterioles (P <0.05). Removal of the arteriolar endothelium abolished insulin-induced vasoconstriction, which suggests that activation of ERK1/2 in endothelial cells is involved in acute insulin-mediated vasoconstriction. To investigate this, acute effects of insulin on ERK1/2 phosphorylation were studied in human microvascular endothelial cells. In support of the findings in skeletal muscle arterioles, insulin induced a 1.9-fold increase in ERK1/2 phosphorylation (maximal at approximately 15 min) in microvascular endothelial cells (P <0.05). We conclude that acute vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by activation of ERK1/2 in endothelium. This ERK1/2-mediated vasoconstrictor effect antagonizes insulin-induced, PI3-kinase-dependent vasodilatation in skeletal muscle arterioles. These findings provide a novel mechanism by which insulin may determine blood flow and glucose disposal in skeletal muscle.  相似文献   
39.
The apparent persistence of scrapie in British sheep for more than 250 years is difficult to explain. Susceptibility to scrapie is associated with particular alleles at a single locus, the PrP gene. As the only known effect of these alleles is to confer susceptibility to a fatal disease, natural selection is expected to reduce their frequency, as has been observed in practice during scrapie outbreaks in single sheep flocks. Susceptibility alleles, and hence scrapie itself, are therefore expected to become rare, yet the disease remains widespread. We suggest that the paradox of scrapie's persistence can be explained by the exceptionally long time-scales inherent in the epidemiology of the disease. It is proposed that scrapie should be regarded as epidemic in British sheep but, unlike more familiar epidemics, which have time-scales of months or years, the scrapie epidemic has a time-scale of centuries. This interpretation implies that scrapie should eventually disappear from the sheep population.  相似文献   
40.
Dorsoventral asymmetry in flowers of Antirrhinum depends on expression of the cycloidea gene in dorsal regions of floral meristems. To determine how cycloidea might be regulated we analysed its expression in several contexts. We show that cycloidea is activated shortly after floral induction, and that in addition to flowers, cycloidea can be asymmetrically expressed in shoots, even though these shoots show no marked dorsoventral asymmetry. Shoots expressing cycloidea include secondary branches lying just below the inflorescence, and shoots of floricaula mutants. Asymmetric cycloidea expression may also be observed within organ primordia, such as the sepals of terminal flowers produced by centroradialis mutants. Later expression of cycloidea within flowers can be modified by mutations in organ identity genes. Taken together, the results suggest that cycloidea can respond to a common dorsoventral pre-pattern in the apex and that the specific effects of cycloidea on the flower depend on interactions with floral-specific genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号