首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   183篇
  国内免费   1篇
  1119篇
  2021年   13篇
  2020年   6篇
  2019年   6篇
  2018年   14篇
  2017年   12篇
  2016年   21篇
  2015年   32篇
  2014年   35篇
  2013年   41篇
  2012年   60篇
  2011年   45篇
  2010年   35篇
  2009年   38篇
  2008年   33篇
  2007年   50篇
  2006年   51篇
  2005年   40篇
  2004年   37篇
  2003年   37篇
  2002年   28篇
  2001年   28篇
  2000年   40篇
  1999年   30篇
  1998年   21篇
  1997年   14篇
  1996年   13篇
  1995年   16篇
  1994年   20篇
  1993年   23篇
  1992年   19篇
  1991年   17篇
  1990年   23篇
  1989年   21篇
  1988年   13篇
  1987年   13篇
  1986年   10篇
  1985年   12篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1981年   9篇
  1980年   8篇
  1977年   8篇
  1976年   16篇
  1975年   6篇
  1974年   9篇
  1973年   12篇
  1972年   7篇
  1970年   7篇
  1969年   8篇
排序方式: 共有1119条查询结果,搜索用时 15 毫秒
71.
Drosophila dachshund is necessary and sufficient for compound eye development and is required for normal leg and brain development. A mouse homologue of dachshund, Dach1, is expressed in the developing retina and limbs, suggesting functional conservation of this gene. We have generated a loss-of-function mutation in Dach1 that results in the abrogation of the wild-type RNA and protein expression pattern in embryos. Homozygous mutants survive to birth but exhibit postnatal lethality associated with a failure to suckle, cyanosis, and respiratory distress. The heart, lungs, kidneys, liver, and skeleton were examined to identify factors involved in postnatal lethality, but these organs appeared to be normal. In addition, blood chemistry tests failed to reveal differences that might explain the lethal phenotype. Gross examination and histological analyses of newborn eyes, limbs, and brains revealed no detectable abnormalities. Since Dach1 mutants die shortly after birth, it remains possible that Dach1 is required for postnatal development of these structures. Alternatively, an additional Dach homologue may functionally compensate for Dach1 loss of function.  相似文献   
72.
73.
Synopsis The filter feeding organ of cyprinid fishes is the branchial sieve, which consists of a mesh formed by gill rakers and tiny channels on the gill arches. In order to establish its possible role during growth we measured the following morphological gill raker parameters over a range of sizes in three cyprinid fishes, bream, white bream and roach: inter raker distance, bony raker length, raker width, cushion length and channel width. At any given standard length common bream has the largest inter raker distance, roach the lowest and white bream is intermediate. In the comb model of filter feeding the inter raker distance is considered to be a direct measure of the mesh size and retention ability (= minimal size of prey that can be retained) of a filter. For the three species under study there is a conflict between the comb model and experimental data on particle retention. Lammens et al. (1987) found that common bream has a large retention ability whereas roach and white bream have a much smaller one. A new model, the channel model (Hoogenboezem et al. 1991) has been developed for common bream; in this model the lateral gill rakers can regulate the mesh size of the medial channels on the other side of the gill slit. The present data indicate that this model is not appropriate for white bream and roach. At any given standard length white bream and roach only reach 70% of the raker length of common bream, which means that in this model the gill slits should to be very narrow during filter feeding. The gill rakers consist of a bony raker and a fleshy cushion. The bony rakers have a rather long needle-like part outside the cushion in bream, but not in white bream and roach which have blunt gill rakers. Blunt gill rakers are not suited to reduce the diameter of the medial channels. The comb model seems more appropriate for white bream and roach, but doubts about the validity of this simple model remain. The sum of the areas of the medial channels is an approximation of the area through which water flows in the filter. This channel area therefore gives an impression of the capacity or flow rate of the filter. With this capacity estimation and an estimation of energy consumption we calculated an energy ratio of filter feeding. The energy ratio decreases with increasing standard length with an exponent close to the expected exponent of -0.40. The energy ratio is highest in bream, intermediate in white bream and lowest in roach.  相似文献   
74.
75.
Laborious sample pretreatment of biological samples represents the most limiting factor for the translation of targeted proteomics assays from research to clinical routine. An optimized method for the simultaneous quantitation of 12 major apolipoproteins (apos) combining on‐line SPE and fast LC‐MS/MS analysis in 6.5 min total run time was developed, reducing the manual sample pretreatment time of 3 μL serum or plasma by 60%. Within‐run and between‐day imprecisions below 10 and 15% (n = 10) and high recovery rates (94–131%) were obtained applying the high‐throughput setup. High‐quality porcine trypsin was used, which outperformed cost‐effective bovine trypsin regarding digestion efficiency. Comparisons with immunoassays and another LC‐MS/MS assay demonstrated good correlation (Pearson's R: 0.81–0.98). Further, requirements on sample quality concerning sampling, processing, and long‐term storage up to 1 year were investigated revealing significant influences of the applied sampling material and coagulant on quantitation results. Apo profiles of 1339 subjects of the LIFE‐Adult‐Study were associated with lifestyle and physiological parameters as well as establish parameters of lipid metabolism (e.g., triglycerides, cholesterol). Besides gender effects, most significant impact was seen regarding lipid‐lowering medication. In conclusion, this novel highly standardized, high‐throughput targeted proteomics assay utilizes a fast, simultaneous analysis of 12 apos from least sample amounts.  相似文献   
76.
Thecosome pteropods (Mollusca, Gastropoda) are an ecologically important, diverse, and ubiquitous group of holoplanktonic animals that are the focus of intense research interest due to their external aragonite shell and vulnerability to ocean acidification. Characterizing the response of these animals to low pH and other environmental stressors has been hampered by continued uncertainty in their taxonomic identification. An example of this confusion in species assignment is found in the genus Diacavolinia. All members of this genus were originally indentified as a single species, Cavolinia longirostris, but over the past fifty years the taxonomy has been revisited multiple times; currently the genus comprises 22 different species. This study examines five species of Diacavolinia, including four sampled in the Northeast Atlantic (78 individuals) and one from the Eastern tropical North Pacific (15 individuals). Diacavolina were identified to species based on morphological characteristics according to the current taxonomy, photographed, and then used to determine the sequence of the “DNA barcoding” region of the cytochrome c oxidase subunit I (COI). Specimens from the Atlantic, despite distinct differences in shell morphology, showed polyphyly and a genetic divergence of <3% (K2P distance) whereas the Pacific and Atlantic samples were more distant (∼19%). Comparisons of Diacavolinia spp. with other Cavolinia spp. reveal larger distances (∼24%). These results indicate that specimens from the Atlantic comprise a single monophyletic species and suggest possible species-level divergence between Atlantic and Pacific populations. The findings support the maintenance of Diacavolinia as a separate genus, yet emphasize the inadequacy of our current taxonomic understanding of pteropods. They highlight the need for accurate species identifications to support estimates of biodiversity, range extent and natural exposure of these planktonic calcifiers to environmental variability; furthermore, the apparent variation of the pteropods shell may have implications for our understanding of the species’ sensitivity to ocean acidification.  相似文献   
77.
  1. Ongoing intensification and fragmentation of European agricultural landscapes dramatically reduce biodiversity and associated functions. Enhancing perennial noncrop areas holds great potential to support ecosystem services such as ant‐mediated pest control.
  2. To study the potential of newly established grassland strips to enhance ant diversity and associated functions, we used hand collection data and predation experiments to investigate differences in (a) ant community composition and (b) biocontrol‐related functional traits, and (c) natural pest control across habitats in cereal fields, old grasslands, and new grassland transects of three years of age.
  3. Ant species diversity was similar between new and old grasslands, but significantly higher in new grasslands than in surrounding cereal fields. Contrary, ant community composition of new grasslands was more similar to cereal fields and distinct from the species pool of old grasslands. The functional trait space covered by the ant communities showed the same distribution between old and new grasslands. Pest control did not differ significantly between habitat types and therefore could not be linked to the prevalence of functional ant traits related to biocontrol services in new grasslands.
  4. Our findings not only show trends of convergence between old and new grasslands, but also indicate that enhancing ant diversity through new grasslands takes longer than three years to provide comparable biodiversity and functionality.
  5. Synthesis and applications: Newly established grasslands can increase ant species richness and abundance and provide a consistent amount of biocontrol services in agroecosystems. However, three years after their establishment, new grasslands were still dominated by common agrobiont ant species and lacked habitat specialists present in old grasslands, which require a constant supply of food resources and long colony establishment times. New grasslands represent a promising measure for enhancing agricultural landscapes but must be preserved in the longer term to promote biodiversity and resilience of associated ecosystem services.
  相似文献   
78.
Intracoronary brachytherapy has recently emerged as a new therapy to prevent restenosis. Initial experimental work was achieved in animal models and the results were assessed by histomorphometry. Initial clinical trials used angiography to guide dosimetry and to assess efficacy. Intravascular ultrasound (IVUS) permits tomographic examination of the vessel wall, elucidating the true morphology of the lumen and transmural components, which cannot be investigated on the lumenogram obtained by angiography. This paper reviews the use of IVUS in the clinical studies of brachytherapy conducted to date. IVUS allows clinicians to make a thorough assessment of the remodeling of the vessel and appears to have a major role to play in facilitating understanding of the underlying mechanisms of action in this emerging field. The authors propose that state-of-the-art IVUS techniques should be employed to further knowledge of the mechanisms of action of brachytherapy in atherosclerotic human coronary arteries.  相似文献   
79.
To test phylogenetic relationships within the genus Testudo (Testudines: Testudinidae), we have sequenced a fragment of the mitochondrial (mt) 12S rRNA gene of 98 tortoise specimens belonging to the genera Testudo, Indotestudo, and Geochelone. Maximum likelihood and neighbor-joining methods identify two main clades of Mediterranean tortoises, one composed of the species Testudo graeca, Testudo marginata, and Testudo kleinmanni and a second of Testudo hermanni, Testudo horsfieldii, and Indotestudo elongata. The first clade, but not the second, was also supported by maximum parsimony analysis. Together with the genus Geochelone, a star-like radiation of these clades was suggested, as a sister-group relationship between the two Testudo clades could not be confirmed. The intraspecies genetic variation was examined by sequencing the mt 12S rRNA fragment from 28 specimens of T. graeca and 49 specimens of T. hermanni from various geographic locations. Haplotype diversity was found to be significantly larger in T. graeca compared with T. hermanni, suggestive of reduced genetic diversity in the latter species, perhaps due to Pleistocene glaciations affecting northern and middle Europe or other sources of lineage reduction. No ancient mt 12S rRNA gene haplotypes were identified in T. graeca and/or T. hermanni originating from islands in the Mediterranean Sea, suggesting that these islands harbor tortoise populations introduced from the European and African mainland.  相似文献   
80.
Kaposi''s sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi''s sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 Å. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8''s mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.Most if not all organisms with DNA genomes have mechanisms to ensure processive DNA synthesis. In bacteria, archaea, and eukaryotes, DNA polymerase subunits include a catalytic subunit and a processivity factor, often referred to as a “sliding clamp.” In these organisms, a clamp loader protein is required to assemble the processivity factor onto the DNA (27, 37). The bacterial sliding (beta) clamp is made up of homodimers of a subunit that comprises three structurally similar subdomains (26), whereas archaeal and eukaryotic proliferating cell nuclear antigen (PCNA) is composed of homotrimers that comprise two structurally similar subdomains (27, 37). For both of these clamps, the monomers assemble head-to-tail to form a closed homodimeric or homotrimeric ring, respectively, around the DNA. In these organisms, a clamp loader protein is required to efficiently load the clamp onto DNA, using an ATP-dependent process. Once loaded on DNA, the processivity factor is capable of binding directly to the DNA polymerase, conferring extended strand synthesis without falling off of the template (50).Herpesviruses encode their own DNA polymerases. However, unlike bacteria, archaea, and eukaryotes, herpesviruses do not encode clamp loaders to assemble their processivity factors onto the DNA. Yet, the accessory subunits of the herpesvirus DNA polymerases still associate with DNA with nanomolar affinity to enable long-chain DNA synthesis (9, 16, 23, 25, 29, 35, 44, 46, 53, 56). Human herpesviruses are divided into three classes, namely, the alpha-, beta-, and gammaherpesviruses, based on homologies found in their genomic organization as well as in protein sequences and function (45). Crystal structures have been determined for the processivity factor UL42 from the alphaherpesvirus herpes simplex virus type 1 (HSV-1) and for UL44 from the betaherpesvirus human cytomegalovirus (HCMV) (2, 3, 58). Despite having little if any sequence homology with processivity factors outside of their herpesvirus subfamily, these structures all share the “processivity fold” originally seen in the structure of the bacterial beta clamp (26). Interestingly, some of these processivity factors have a different quaternary structure. PCNA forms a head-to-tail trimeric ring (18, 27), HSV-1 UL42 is a monomer (10, 14, 16, 46, 58) equivalent to one-third of the PCNA complex, and HCMV UL44 is a head-to-head dimer in the form of a C-shaped clamp (2, 3, 9).Both HSV-1 UL42 and HCMV UL44 have a basic face that has been shown to be important for interacting with DNA (25, 35). In the case of dimeric HCMV UL44, the basic surface of each monomer faces inward, toward the center of the C clamp, and includes a basic loop, called the “gap loop,” that is thought to wrap around DNA (24). Recently the crystal structure of the bacterial beta clamp was determined in complex with DNA (15). In that structure, DNA was found to be located in the central pore of the clamp. Amino acid residues that interacted with DNA were in positions structurally homologous to those found on the positively charged faces of UL42 and UL44.UL42 and UL44 each also has a surface, facing away from the DNA binding face, that is important for interacting with the catalytic subunit of the viral DNA polymerase. Indeed, both of these proteins have been crystallized in complex with C-terminal peptides from their respective catalytic subunits, HSV-1 UL30 and HCMV UL54 (2, 58). Together with biochemical and mutational analyses, these crystal structures indicated that, although the details of the interaction are different, the catalytic subunit of the polymerase binds to a region including and in close proximity to a long loop that connects the N- and C-terminal subdomains, called the interdomain connector loop (32-34). The corresponding region of PCNA is also important for polymerase attachment and mediates the interactions of PCNA with many other cellular proteins (40). Both UL54 and UL30 were shown to attach to their respective subunits, UL44 and UL42, by way of their extreme C termini. The C-terminal residues responsible for this interaction correspond to amino acids that are not detectably conserved, either by sequence or by structure, among herpesvirus catalytic subunits. The HSV-1 UL30-UL42 interaction involves a groove to one side of the UL42 connector loop, with hydrophilic interactions being critical (58). The HCMV UL54-UL44 interaction involves a crevice near the UL44 connector loop, and hydrophobic interactions are crucial (2, 32, 33). Moreover, the HCMV UL44 crevice is on the opposite side of the connector loop with respect to the HSV-1 UL42 groove.Kaposi''s sarcoma-associated herpesvirus (KSHV), a gammaherpesvirus, encodes a viral DNA polymerase catalytic subunit, Pol-8, and an accessory subunit, PF-8 (4, 7, 8, 29, 48, 57). PF-8 can bind to Pol-8 directly and specifically (8, 29) and is required for long-chain DNA synthesis in vitro (29). Similarly to UL44, PF-8 forms dimers in solution and when bound to DNA (9). Although it is likely that UL44 and PF-8 are the processivity factors for HCMV and KSHV, respectively, rigorous experiments demonstrating this have not been performed. However, for the sake of brevity and clarity, we will refer to these proteins as processivity factors.Here we present the crystal structure of PF-8 and show that PF-8 forms a head-to-head homodimer akin to UL44 but lacking the long gap loops which are thought to wrap around DNA. This suggests that PF-8 binds DNA differently than does UL44 or UL42. Because Pol-8 appears to lack a long, flexible C-terminal tail with a length comparable to those of other herpesvirus Pols, we expect the mode of binding of the catalytic subunit to be different as well. Based on structural data, information from homologs, and initial biochemical results, we were able to identify possible sites for interactions with DNA and Pol-8 and to propose a model for the simultaneous interaction of all three components of the complex. Further, the availability of crystal structures for all three herpesvirus classes provides new insights into comparative structure, function, and evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号