首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   103篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   9篇
  2017年   6篇
  2016年   7篇
  2015年   14篇
  2014年   15篇
  2013年   22篇
  2012年   25篇
  2011年   24篇
  2010年   16篇
  2009年   20篇
  2008年   17篇
  2007年   24篇
  2006年   29篇
  2005年   22篇
  2004年   16篇
  2003年   13篇
  2002年   13篇
  2001年   11篇
  2000年   11篇
  1999年   9篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   13篇
  1992年   11篇
  1991年   7篇
  1990年   15篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1977年   3篇
  1976年   5篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有471条查询结果,搜索用时 15 毫秒
451.
Flow cytometric (FC) analysis was applied to determine changes at cellular level during the cultivation of hybridoma cell line MN12 in a suspension batch culture. The relative cell size, cytoplasmic and membrane IgG content and the viability were monitored. Besides, the specificity of the cytoplasmic and membrane IgG was ascertained by means of a synthetic peptide containing the antigenic epitope recognized by the antibody. Cell size was found to increase during the exponential growth phase. The viability as determined by FC follows a similar pattern with the viability data obtained by the conventional trypan blue exclusion test. The relative cytoplasmic and membrane IgG contents were high during the exponential growth and low during stationary phase. Measurement of cell cycle distribution and the antibody content in the culture fluid, indicated that the major part of the cytoplasmic IgG is secreted by cells in the G1-phase. It is concluded that flow cytometry is a useful tool to characterize hybridoma cell lines in a suspension batch culture.  相似文献   
452.
Stem cells from the adult hair follicle bulge can differentiate into neurons and glia, which is advantageous for the development of an autologous cell-based therapy for neurological diseases. Consequently, bulge stem cells from plucked hair may increase opportunities for personalized neuroregenerative therapy. Hairs were plucked from the scalps of healthy donors, and the bulges were cultured without prior tissue treatment. Shortly after outgrowth from the bulge, cellular protein expression was established immunohistochemically. The doubling time was calculated upon expansion, and the viability of expanded, cryopreserved cells was assessed after shear stress. The neuroglial differentiation potential was assessed from cryopreserved cells. Shortly after outgrowth, the cells were immunopositive for nestin, SLUG, AP-2α and SOX9, and negative for SOX10. Each bulge yielded approximately 1 × 104 cells after three passages. Doubling time was 3.3 (±1.5) days. Cellular viability did not differ significantly from control cells after shear stress. The cells expressed class III β-tubulin (TUBB3) and synapsin-1 after 3 weeks of neuronal differentiation. Glial differentiation yielded KROX20- and MPZ-immunopositive cells after 2 weeks. We demonstrated that human hair follicle bulge-derived stem cells can be cultivated easily, expanded efficiently and kept frozen until needed. After cryopreservation, the cells were viable and displayed both neuronal and glial differentiation potential.  相似文献   
453.
The fimbriata (fim) gene of Antirrhinum affects both the identity and arrangement of organs within the flower, and encodes a protein with an F-box motif. We show that FIM associates with a family of proteins, termed FAPs (FIM-associated proteins), that are closely related to human and yeast Skp1 proteins. These proteins form complexes with F-box-containing partners to promote protein degradation and cell cycle progression. The fap genes are expressed in inflorescence and floral meristems in a pattern that incorporates the domain of fim expression, supporting an in vivo role for a FIM-FAP complex. Analysis of a series of novel fim alleles shows that fim plays a key role in the activation of organ identity genes. In addition, fim acts in the regions between floral organs to specify the correct positioning and maintenance of morphological boundaries. Taking these results together, we propose that FIM-FAP complexes affect both gene expression and cell division, perhaps by promoting selective degradation of regulatory proteins. This may provide a mechanism by which morphological boundaries can be aligned with domains of gene expression during floral development.  相似文献   
454.
455.
456.
In adult goldfish, electrophysiological studies have shown that the retinotectal projection reorganizes, following removal of half of the tectum, to form a complete but compressed projection over the remaining half tectum. As a result, each fiber terminates more rostrally than normal. Electron microscopic studies suggest a competition between retinal fibers for a fixed number of synaptic sites. The current study examines whether retinal arbors in the compressed projection are smaller than normal in extent or branching and whether the fiber paths in the tectum show the rostral movements and the search strategy that the retinal fibers use. The caudal half tectum was removed without cutting retinal fibers except those at the cut edge. At 3 to 19 months afterward, retinal fibers were labeled with horseradish peroxidase. In whole-mounted tecta, fibers and terminals were drawn under camera lucida and compared with normal arbors. The axonal paths were also traced across the tectum to their termination sites. At 3 to 6 months (early stages of compression), the arbors were rather normal in appearance, although they were actually significantly larger (23%) than normal in linear extent, arborized somewhat deeper and had fewer branches (18%). The fibers normally terminating in the rostral tectum followed normal stereotyped paths, whereas those cut at the edge had grown back and forth loops (apparent searching behavior) with little branching. By 10 months when compression is complete, arbors were significantly smaller than normal (19%), were arborizing significantly deeper, and had significantly fewer branches (19%). The differences were more pronounced in arbors of coarse and medium caliber than in fine caliber axons. The axons still ran in stereotyped fascicles, but included an extrafascicular portion that, unlike any axons in normals, turned back in a rostral direction before branching. This striking effect, present even in far rostral tectum, indicated that arbors had been forced to move rostrally to accomodate those from the ablated half. The small effect on arbor extent suggests that this is influenced by factors other than the magnification factor of the map, perhaps postsynaptic dendritic extent. The increased depth of termination is consistent with the increased thickness of the retinal terminal layer. The decreased number of branches is consistent with the conclusion that the remaining fixed number of synaptic sites shared among the full complement of retinal fibers should result in fewer synapses per retinal fiber. © 1995 John Wiley & Sons, Inc.  相似文献   
457.
An automated cytometry program was applied to the extensor digitorum longus muscle of young and adult rats. Lesser diameter and spatial distribution of about 4000 fibres were measured in digital images from ATPase-stained muscle sections. All fibre types grow thicker with age, but the coefficient of variation of the diameter is age-independent. At both ages, 2B fibres have the largest mean diameter and are most frequent. 2A fibres in young rats present a diameter smaller or equal to type 1 but then show a faster increase in size; their relative number increases from 20 to 28%. Consequently type 2A displays the most important change with age. The spatial distribution of fibres is mathematically expressed; most images show a random distribution of type 1 and type 2 fibres. Taking into account the variation of fibre size of each type, the number of fibres which should be measured in order to reach a specified precision was calculated.  相似文献   
458.
Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.  相似文献   
459.
Seasonal variations in human serum levels of 25-hydroxycholecalciferol (25OHD) have been largely documented in transverse studies of population. But seasonality is not per se a demonstration that 25OHD serum levels fluctuate along the course of year according to a waveform profile with a periodic rhythm. Because of this, we attempted to investigate the possible occurrence of a circannual rhythm for 25OHD serum levels in a longitudinal design, by fitting a 365.25-day cosine curve to temporal biodata recorded in 10 clinically healthy subjects, monthly sampled for RIA determinations of 25OHD. Cosinor procedure statistically validated the occurrence of a circannual rhythm for 25OHD serum concentrations at a highly significant level of probability (P = 0.0015) for null hypothesis amplitude = 0. With 95% of probability, amplitude ranges from 5.0 to 16.5 ng/ml (mean value of oscillation = 10 ng/ml), while acrophase is temporally located from September 14 to December 3 (mean timing = October 21). Yearly, mean values for 25OHD serum concentrations is of 40.3 +/- 5.4 ng/ml as quantified by the line which transversely divides the cosine curve interpolating original biodata. By calculating the band of a complete 12 months variability which includes 90% of the distribution with 90% confidence limits, the circannual chronodesm of 25OHD serum levels has been obtained. Such a chronodesmic sinusoid has been compared to the circannual chronogram. By this comparison, a dissociation between the crest (October) and the peak (August) has been detected. The finding suggests that seasonal variations are superimposed to the circannual rhythm. Seasonal but also circannual changes, thus, characterize the yearly variability of 25OHD serum levels in man.  相似文献   
460.
Cytokinetic abscission, the final stage of cell division where the two daughter cells are separated, is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. The ESCRT-III subunit CHMP4B is a key effector in abscission, whereas its paralogue, CHMP4C, is a component in the abscission checkpoint that delays abscission until chromatin is cleared from the intercellular bridge. How recruitment of these components is mediated during cytokinesis remains poorly understood, although the ESCRT-binding protein ALIX has been implicated. Here, we show that ESCRT-II and the ESCRT-II–binding ESCRT-III subunit CHMP6 cooperate with ESCRT-I to recruit CHMP4B, with ALIX providing a parallel recruitment arm. In contrast to CHMP4B, we find that recruitment of CHMP4C relies predominantly on ALIX. Accordingly, ALIX depletion leads to furrow regression in cells with chromosome bridges, a phenotype associated with abscission checkpoint signaling failure. Collectively, our work reveals a two-pronged recruitment of ESCRT-III to the cytokinetic bridge and implicates ALIX in abscission checkpoint signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号