首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   106篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   23篇
  2014年   18篇
  2013年   24篇
  2012年   29篇
  2011年   28篇
  2010年   27篇
  2009年   23篇
  2008年   23篇
  2007年   27篇
  2006年   34篇
  2005年   24篇
  2004年   20篇
  2003年   15篇
  2002年   13篇
  2001年   14篇
  2000年   14篇
  1999年   10篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   8篇
  1994年   6篇
  1993年   13篇
  1992年   11篇
  1991年   9篇
  1990年   15篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有550条查询结果,搜索用时 15 毫秒
211.
Data from population- and clinic-based epidemiologic studies of rheumatoid arthritis patients suggest that individuals with rheumatoid arthritis are at risk for developing clinically evident congestive heart failure. Many established risk factors for congestive heart failure are over-represented in rheumatoid arthritis and likely account for some of the increased risk observed. In particular, data from animal models of cytokine-induced congestive heart failure have implicated the same inflammatory cytokines produced in abundance by rheumatoid synovium as the driving force behind maladaptive processes in the myocardium leading to congestive heart failure. At present, however, the direct effects of inflammatory cytokines (and rheumatoid arthritis therapies) on the myocardia of rheumatoid arthritis patients are incompletely understood.  相似文献   
212.
Post-translational histone modifications abound and regulate multiple nuclear processes. Most modifications are targeted to the amino-terminal domains of histones. Here we report the identification and characterization of acetylation of lysine 56 within the core domain of histone H3. In the crystal structure of the nucleosome, lysine 56 contacts DNA. Phenotypic analysis suggests that lysine 56 is critical for histone function and that it modulates formamide resistance, ultraviolet radiation sensitivity, and sensitivity to hydroxyurea. We show that the acetylated form of histone H3 lysine 56 (H3-K56) is present during interphase, metaphase, and S phase. Finally, reverse genetic analysis indicates that none of the known histone acetyltransferases is solely responsible for H3-K56 acetylation in Saccharomyces cerevisiae.  相似文献   
213.
The processivity subunit of the herpes simplex virus DNA polymerase, UL42, is a monomer in solution. However, UL42 is structurally similar to sliding clamp processivity factors, such as PCNA, which encircle DNA as a multimeric ring. We used chemical crosslinking and electrophoretic mobility-shift assays to investigate whether UL42 oligomerizes upon DNA binding. UL42 did not form intermolecular crosslinks upon treatment with glutaraldehyde in the presence of DNA, whereas proteins that are known to be multimers in solution were successfully crosslinked by this treatment. This result suggests that UL42 does not form multimers on DNA. We next analyzed the composition of UL42:DNA complexes using electrophoretic mobility-shift assays. UL42 was mixed with a maltose-binding protein-UL42 fusion protein before being added to DNA. The patterns of electrophoretic mobility of the resultant protein:DNA complexes were those predicted if each isoform of UL42 binds to DNA as a monomer. From this result and the failure of UL42 to form crosslinks, we infer that UL42 binds DNA as a monomer.  相似文献   
214.
The human cytomegalovirus DNA polymerase contains a catalytic subunit, UL54, and an accessory protein, UL44. Recent studies suggested that UL54 might interact via its extreme C terminus with UL44 (A. Loregian, R. Rigatti, M. Murphy, E. Schievano, G. Palu', and H. S. Marsden, J. Virol. 77:8336-8344, 2003). To address this hypothesis, we quantitatively measured the binding of peptides corresponding to the extreme C terminus of UL54 to UL44 by using isothermal titration calorimetry. A peptide corresponding to the last 22 residues of UL54 was sufficient to bind specifically to UL44 in a 1:1 complex with a dissociation constant of ca. 0.7 microM. To define individual residues in this segment that are crucial for interacting with UL44, we engineered a series of mutations in the C-terminal region of UL54. The UL54 mutants were tested for their ability to interact with UL44 by glutathione S-transferase pulldown assays, for basal DNA polymerase activity, and for long-chain DNA synthesis in the presence of UL44. We observed that deletion of the C-terminal segment or substitution of alanine for Leu1227 or Phe1231 in UL54 greatly impaired both the UL54-UL44 interaction in pulldown assays and long-chain DNA synthesis without affecting basal polymerase activity, identifying these residues as important for subunit interaction. Thus, like the herpes simplex virus UL30-UL42 interaction, a few specific side chains in the C terminus of UL54 are crucial for UL54-UL44 interaction. However, the UL54 residues important for interaction with UL44 are hydrophobic and not basic. This information might aid in the rational design of new drugs for the treatment of human cytomegalovirus infection.  相似文献   
215.
216.
The way that UL42, the processivity subunit of the herpes simplex virus DNA polymerase, interacts with DNA and promotes processivity remains unclear. A positively charged face of UL42 has been proposed to participate in electrostatic interactions with DNA that would tether the polymerase to a template without preventing its translocation via DNA sliding. An alternative model proposes that DNA binding by UL42 is not important for processivity. To investigate these issues, we substituted alanine for each of four conserved arginine residues on the positively charged surface. Each single substitution decreased the DNA binding affinity of UL42, with 14- to 30-fold increases in apparent dissociation constants. The mutant proteins exhibited no meaningful change in affinity for binding to the C terminus of the catalytic subunit of the polymerase, indicating that the substitutions exert a specific effect on DNA binding. The substitutions decreased UL42-mediated long-chain DNA synthesis by the polymerase in the same rank order in which they affected DNA binding, consistent with a role for DNA binding in polymerase processivity. Combining these substitutions decreased DNA binding further and impaired the complementation of a UL42 null virus in transfected cells. Additionally, using a revised mathematical model to analyze rates of dissociation of UL42 from DNAs of various lengths, we found that dissociation from internal sites, which would be the most important for tethering the polymerase, was relatively slow, even at ionic strengths that permit processive DNA synthesis by the holoenzyme. These data provide evidence that the basic surface of UL42 interacts with DNA and support a model in which DNA binding by UL42 is important for processive DNA synthesis.  相似文献   
217.
Binding of herpes simplex virus-1 US11 to specific RNA sequences   总被引:2,自引:0,他引:2       下载免费PDF全文
Herpes simplex virus-1 US11 is a RNA-binding protein with a novel RNA-binding domain. US11 has been reported to exhibit sequence- and conformation-specific RNA-binding, but the sequences and conformations important for binding are not known. US11 has also been described as a double-stranded RNA (dsRNA)-binding protein. To investigate the US11–RNA interaction, we performed in vitro selection of RNA aptamers that bind US11 from a RNA library consisting of >1014 80 base sequences which differ in a 30 base randomized region. US11 bound specifically to selected aptamers with an affinity of 70 nM. Analysis of 23 selected sequences revealed a strong consensus sequence. The US11 RNA-binding domain and ≤46 bases of selected RNA containing the consensus sequence were each sufficient for binding. US11 binding protected the consensus motif from hydroxyl radical cleavage. RNase digestions of a selected aptamer revealed regions of both single-stranded RNA and dsRNA. We observed that US11 bound two different dsRNAs in a sequence non-specific manner, but with lower affinity than it bound selected aptamers. The results define a relatively short specific sequence that binds US11 with high affinity and indicate that dsRNA alone does not confer high-affinity binding.  相似文献   
218.
Tissue regeneration is a highly coordinated process with sequential events including immune cell infiltration, clearance of damaged tissues, and immune‐supported regrowth of the tissue. Aging has a well‐documented negative impact on this process globally; however, whether changes in immune cells per se are contributing to the decline in the body’s ability to regenerate tissues with aging is not clearly understood. Here, we set out to characterize the dynamics of macrophage infiltration and their functional contribution to muscle regeneration by comparing young and aged animals upon acute sterile injury. Injured muscle of old mice showed markedly elevated number of macrophages, with a predominance for Ly6Chigh pro‐inflammatory macrophages and a lower ratio of the Ly6Clow repair macrophages. Of interest, a recently identified repair macrophage‐derived cytokine, growth differentiation factor 3 (GDF3), was markedly downregulated in injured muscle of old relative to young mice. Supplementation of recombinant GDF3 in aged mice ameliorated the inefficient regenerative response. Together, these results uncover a deficiency in the quantity and quality of infiltrating macrophages during aging and suggest that in vivo administration of GDF3 could be an effective therapeutic approach.  相似文献   
219.
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号