首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   60篇
  2021年   9篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   16篇
  2014年   23篇
  2013年   20篇
  2012年   21篇
  2011年   26篇
  2010年   22篇
  2009年   21篇
  2008年   28篇
  2007年   25篇
  2006年   35篇
  2005年   28篇
  2004年   27篇
  2003年   9篇
  2002年   22篇
  2001年   17篇
  2000年   22篇
  1999年   20篇
  1998年   10篇
  1997年   12篇
  1996年   12篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   24篇
  1991年   13篇
  1990年   7篇
  1989年   16篇
  1988年   4篇
  1987年   6篇
  1986年   7篇
  1985年   12篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1974年   8篇
  1973年   10篇
  1970年   4篇
  1969年   10篇
  1967年   3篇
排序方式: 共有668条查询结果,搜索用时 328 毫秒
81.
Synthetic biology, with its goal of designing biological entities for wide-ranging purposes, remains a field of intensive research interest. However, the vast complexity of biological systems has heretofore rendered rational design prohibitively difficult. As a result, directed evolution remains a valuable tool for synthetic biology, enabling the identification of desired functionalities from large libraries of variants. This review highlights the most recent advances in the use of directed evolution in synthetic biology, focusing on new techniques and applications at the pathway and genome scale.  相似文献   
82.
Direct cloning of large genomic sequences   总被引:1,自引:0,他引:1  
  相似文献   
83.
The cell-mediated adaptive immune response depends upon the activation of T cells via recognition of antigen in the context of a major histocompatibility complex (MHC) molecule. Although studies have shown that alterations in T cell receptor glycosylation reduces the activation threshold, the data on MHC is far less definitive. Here, we discuss the data on MHC glycosylation and the role the glycans might play during the adaptive host response.  相似文献   
84.
Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.  相似文献   
85.
Goodwin RJ  Dungworth JC  Cobb SR  Pitt AR 《Proteomics》2008,8(18):3801-3808
We have used MALDI-MS imaging (MALDI-MSI) to monitor the time dependent appearance and loss of signals when tissue slices are brought rapidly to room temperature for short to medium periods of time. Sections from mouse brain were cut in a cryostat microtome, placed on a MALDI target and allowed to warm to room temperature for 30 s to 3 h. Sections were then refrozen, fixed by ethanol treatment and analysed by MALDI-MSI. The intensity of a range of markers were seen to vary across the time course, both increasing and decreasing, with the intensity of some markers changing significantly within 30 s and markers also showed tissue location specific evolution. The markers resulting from this autolysis were compared directly to those that evolved in a comparable 16 h on-tissue trypsin digest, and the markers that evolved in the two studies were seen to be substantially different. These changes offer an important additional level of location-dependent information for mapping changes and seeking disease-dependent biomarkers in the tissue. They also indicate that considerable care is required to allow comparison of biomarkers between MALDI-MSI experiments and also has implications for the standard practice of thaw-mounting multiple tissue sections onto MALDI-MS targets.  相似文献   
86.
The RP 10 form of autosomal dominant retinitis pigmentosa (adRP) is caused by mutations in the widely expressed protein inosine 5′-monophosphate dehydrogenase type 1 (IMPDH1). These mutations have no effect on the enzymatic activity of IMPDH1, but do perturb the association of IMPDH1 with nucleic acids. Two newly discovered retinal-specific isoforms, IMPDH1(546) and IMPDH1(595), may provide the key to the photoreceptor specificity of disease [S.J. Bowne, Q. Liu, L.S. Sullivan, J. Zhu, C.J. Spellicy, C.B. Rickman, E.A. Pierce, S.P. Daiger, Invest. Ophthalmol. Vis. Sci. 47 (2006) 3754-3765]. Here we express and characterize the normal IMPDH1(546) and IMPDH1(595), together with their adRP-linked variants, D226N. The enzymatic activity of the purified IMPDH1(546), IMPDH1(595) and the D226N variants is indistinguishable from the canonical form. The intracellular distribution of IMPDH1(546) and IMPDH1(595) is also similar to the canonical IMPDH1 and unaffected by the D226N mutation. However, unlike the canonical IMPDH1, the retinal specific isoforms do not bind significant fractions of a random pool of oligonucleotides. This observation indicates that the C-terminal extension unique to the retinal isoforms blocks the nucleic acid binding site of IMPDH1, and thus uniquely regulates protein function within photoreceptors.  相似文献   
87.
Extracellular signal-regulated kinase 3 (ERK3) is a member of the mitogen-activated protein (MAP) kinase family. ERK3 is most similar in its kinase catalytic domain to ERK2, yet it displays many unique properties. Among these, unlike ERK2, which translocates to the nucleus following activation, ERK3 is constitutively localized to the nucleus, despite the lack of a defined nuclear localization sequence. We created two chimeras between ERK2 and the catalytic domain of ERK3 (ERK3DeltaC), and some mutants of these chimeras, to examine the basis for the different behaviors of these two MAP kinase family members. We find the following: 1) the N-terminal folding domain of ERK3 functions in phosphoryl transfer reactions with the C-terminal folding domain of ERK2; 2) the C-terminal halves of ERK2 and ERK3DeltaC are primarily responsible for their subcellular localization in resting cells; and 3) the N-terminal folding domain of ERK2 is required for its activation in cells, its interaction with MEK1, and its accumulation in the nucleus.  相似文献   
88.
Summary Six different statistical methods for comparing limiting dilution assays were evaluated, using both real data and a power analysis of simulated data. Simulated data consisted of a series of 12 dilutions for two treatment groups with 24 cultures per dilution and 1,000 independent replications of each experiment. Data within each replication were generated by Monte Carlo simulation, based on a probability model of the experiment. Analyses of the simulated data revealed that the type I error rates for the six methods differed substantially, with only likelihood ratio and Taswell's weighted mean methods approximating the nominal 5% significance level. Of the six methods, likelihood ratio and Taswell's minimum Chi-square exhibited the best power (least probability of type II errors). Taswell's weighted mean test yielded acceptable type I and type II error rates, whereas the regression method was judged unacceptable for scientific work.  相似文献   
89.
We have synthesized and characterized bis(sulfo-N-succinimidyl) doxyl-2-spiro-5'-azelate (BSSDA), a membrane-impermeant bifunctional spin-labeling reagent. BSSDA is a nine carbon backbone homologue of bis(sulfo-N-succinimidyl) doxyl-2-spiro-4'-pimelate [BSSDP; Beth et al. (1986) Biochemistry 25, 3824-3832]. Due to its longer backbone, BSSDA can span longer distances between reactive groups on a protein than can BSSDP. However, the purpose of the bifunctional design of these reagents is to provide a tight motional coupling of the spin labels to the surface of a target protein. To test whether the longer backbone of BSSDA results in a greater local flexibility and thereby undermines the effects of bidentate attachment, we have labeled with BSSDA anion-exchange channels of intact human erythrocytes at the same site as we have previously labeled them with BSSDP. Linear and saturation-transfer EPR spectra of BSSDA-labeled anion-exchange channels in intact cells closely approximate the corresponding spectra from BSSDP-labeled channels. Thus, the longer backbone of BSSDA relative to BSSDP does not give rise to significant local flexibility, even when BSSDA is bound to a site that can be spanned by the shorter reagent.  相似文献   
90.
Cahokia and the Archaeology of Power. Thomas E. Emerson. Tuscaloosa: University of Alabama Press, 1997.318 pp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号