首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   60篇
  668篇
  2021年   9篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   16篇
  2014年   23篇
  2013年   20篇
  2012年   21篇
  2011年   26篇
  2010年   22篇
  2009年   21篇
  2008年   28篇
  2007年   25篇
  2006年   35篇
  2005年   28篇
  2004年   27篇
  2003年   9篇
  2002年   22篇
  2001年   17篇
  2000年   22篇
  1999年   20篇
  1998年   10篇
  1997年   12篇
  1996年   12篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   24篇
  1991年   13篇
  1990年   7篇
  1989年   16篇
  1988年   4篇
  1987年   6篇
  1986年   7篇
  1985年   12篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1974年   8篇
  1973年   10篇
  1970年   4篇
  1969年   10篇
  1967年   3篇
排序方式: 共有668条查询结果,搜索用时 15 毫秒
21.
22.
23.
Extracellular signal-regulated kinases 1 and 2 are growth factor-sensitive serine/threonine kinases. cDNAs for both human kinases were isolated and sequenced. The nucleic acid and deduced protein sequences of human extracellular signal-regulated kinase 1 were 88% and 96% identical, respectively, to the homologous rat sequences. The nucleic acid and deduced protein sequences of human extracellular signal-regulated kinase 2 were 90% and 98% identical, respectively, to the corresponding rat sequences. A human extracellular signal-regulated kinase 2 specific probe was used to demonstrate that the mRNA for this kinase was present in T cells and did not change with activation. The deduced protein sequences of both human kinases were greater than 95% identical to two Xenopus kinase sequences, indicating that these enzymes are highly conserved across species.  相似文献   
24.
25.
The WNK kinases are a recently discovered family of serine-threonine kinases that have been shown to play an essential role in the regulation of electrolyte homeostasis, lntronic deletions in the WNK1 gene resuk in its overexpression and lead to pseudohypoaldosteronism type Ⅱ, a disease with salt-sensitive hypertension and hyperkalemia. This review focuses on the recent evidence elucidating the structure of the kinase domain of WNK1 and functions of these kinases in normal and disease physiology. Their functions have implications for understanding the biochemical mechanism that could lead to the retention or insertion of proteins in the plasma membrane. The WNK kinases may be able to influence ion homeostasis through its effects on synaptotagmin function.  相似文献   
26.
Disassembly of the yeast V-ATPase into cytosolic V1 and membrane V0 sectors inactivates MgATPase activity of the V1-ATPase. This inactivation requires the V1 H subunit (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761–21767), but its mechanism is not fully understood. The H subunit has two domains. Interactions of each domain with V1 and V0 subunits were identified by two-hybrid assay. The B subunit of the V1 catalytic headgroup interacted with the H subunit N-terminal domain (H-NT), and the C-terminal domain (H-CT) interacted with V1 subunits B, E (peripheral stalk), and D (central stalk), and the cytosolic N-terminal domain of V0 subunit Vph1p. V1-ATPase complexes from yeast expressing H-NT are partially inhibited, exhibiting 26% the MgATPase activity of complexes with no H subunit. The H-CT domain does not copurify with V1 when expressed in yeast, but the bacterially expressed and purified H-CT domain inhibits MgATPase activity in V1 lacking H almost as well as the full-length H subunit. Binding of full-length H subunit to V1 was more stable than binding of either H-NT or H-CT, suggesting that both domains contribute to binding and inhibition. Intact H and H-CT can bind to the expressed N-terminal domain of Vph1p, but this fragment of Vph1p does not bind to V1 complexes containing subunit H. We propose that upon disassembly, the H subunit undergoes a conformational change that inhibits V1-ATPase activity and precludes V0 interactions.V-ATPases are ubiquitous proton pumps responsible for compartment acidification in all eukaryotic cells (1, 2). These pumps couple hydrolysis of cytosolic ATP to proton transport into the lysosome/vacuole, endosomes, Golgi apparatus, clathrin-coated vesicles, and synaptic vesicles. Through their role in organelle acidification, V-ATPases are linked to cellular functions as diverse as protein sorting and targeting, zymogen activation, cytosolic pH homeostasis, and resistance to multiple types of stress (3). They are also recruited to the plasma membrane of certain cells, where they catalyze proton export (4, 5).V-ATPases are evolutionarily related to ATP synthases of bacteria and mitochondria and consist of two multisubunit complexes, V1 and V0, which contain the sites for ATP hydrolysis and proton transport, respectively. Like the ATP synthase (F-ATPase), V-ATPases utilize a rotational catalytic mechanism. ATP binding and hydrolysis in the three catalytic subunits of the V1 sector generate sequential conformational changes that drive rotation of a central stalk (68). The central stalk subunits are connected to a ring of proteolipid subunits in the V0 sector that bind protons to be transported. The actual transport is believed to occur at the interface of the proteolipids and V0 subunit a. Rotational catalysis will be productive in proton transport only if V0 subunit a is held stationary, whereas the proteolipid ring rotates (8). This “stator function” resides in a single peripheral stalk in F-ATPases (9, 10), but is distributed among up to three peripheral stalks in V-ATPases (1113). The peripheral stator stalks link V0 subunit a to the catalytic headgroup and ensures that there is rotation of the central stalk complex relative to the V0 a subunit and catalytic headgroup.Eukaryotic V-ATPases are highly conserved in both their overall structure and the sequences of individual subunits. Although homologs of most subunits of eukaryotic V-ATPases are present in archaebacterial V-ATPases (also known as A-ATPases), the C and H subunits are unique to eukaryotes. Both subunits have been localized at the interface of the V1 and V0 sectors, suggesting that they are positioned to play a critical role in structural and functional interaction between the two sectors (1416). The yeast C and H subunits are the only eukaryotic V-ATPase subunits for which x-ray crystal structures are available (17, 18). The structure of the C subunit revealed an elongated “dumbbell-shaped” molecule, with foot, head, and neck domains (18). The structure of the H subunit indicated two domains. The N-terminal 348 amino acids fold into a series of HEAT repeats and are connected by a 4-amino acid linker to a C-terminal domain containing amino acids 352–478 (17). These two domains have partially separable functions in the context of the assembled V-ATPase (19). Complexes containing only the N-terminal domain of the H subunit (H-NT)2 supported some ATP hydrolysis but little or no proton pumping in isolated vacuolar vesicles (19, 20). The C-terminal domain (H-CT) assembled with the rest of the V-ATPase in the absence of intact subunit H, but supported neither ATPase nor proton pumping activity (19). However, co-expression of the H-NT and H-CT domains results in assembly of both sectors with the V-ATPase and allows increased ATP-driven proton pumping in isolated vacuolar vesicles. These results suggest that the H-NT and H-CT domains play distinct and complementary roles even when the two domains are not covalently attached.In addition to their role as dedicated proton pumps, eukaryotic V-ATPases are also distinguished from F-ATPases and archaeal V-ATPases in their regulation. Eukaryotic V-ATPases are regulated in part by reversible disassembly of the V1 complex from the V0 complex (1, 21, 22). In yeast, disassembly of previously assembled complexes occurs in response to glucose deprivation, and reassembly is rapidly induced by glucose readdition to glucose-deprived cells. Disassembly down-regulates pump activity, and both the disassembled sectors are inactivated. Inhibition of ATP hydrolysis in free V1 sectors is particularly critical, because release of an active ATPase into the cytosol could deplete cytosolic ATP stores. This inhibition is dependent in part on the H subunit. V1 complexes isolated from vma13Δ mutants, which lack the H subunit gene (V1(-H) complexes) have MgATPase activity. Consistent with a physiological role for H subunit inhibition of V1, heterozygous diploids containing elevated levels of free V1 complexes without subunit H have severe growth defects (23). V1 complexes containing subunit H have no MgATPase activity, but retain some CaATPase activity, suggesting a role for nucleotides in inhibition (24, 25). Consistent with such a role, both the CaATPase activity of native V1 and the MgATPase activity of V1(-H) complexes are lost within a few minutes of nucleotide addition (24).A number of points of interaction between the H subunit and the V1 and V0 complexes have been identified through two-hybrid assays, binding of expressed proteins, and cross-linking experiments. These experiments have indicated that the H subunit binds to V1 subunits E and G of the V-ATPase peripheral stalks (26, 27), the catalytic subunit (V1 subunit A) (28), regulatory V1 subunit B (15), and the N-terminal domain of subunit a (28). Recently, Jeffries and Forgac (29) have found that cysteines introduced into the C-terminal domain of subunit H can be cross-linked to subunit F in isolated V1 sectors via a 10-Å cross-linking reagent.In this work, we examine both the subunit-subunit interactions and functional roles of the H-NT and H-CT domains in inhibition of V1-ATPase activity. When expressed in yeast cells lacking subunit H, H-NT can be isolated with cytosolic V1 complexes, but H-CT cannot. We find that both of these domains contribute to inhibition of ATPase activity, but that stable binding to V1 and full inhibition of activity requires both domains. We also find that the H-CT can bind to the cytosolic N-terminal domain of V0 subunit Vph1p (Vph1-NT) in isolation, but does not support tight binding of Vph1-NT to isolated V1 complexes.  相似文献   
27.
WNK1 belongs to a unique protein kinase family that lacks the catalytic lysine in its normal position. Mutations in human WNK1 and WNK4 have been implicated in causing a familial form of hypertension. Here we report that overexpression of WNK1 led to increased activity of cotransfected ERK5 in HEK293 cells. ERK5 activation was blocked by the MEK5 inhibitor U0126 and expression of a dominant negative MEK5 mutant. Expression of dominant negative mutants of MEKK2 and MEKK3 also blocked activation of ERK5 by WNK1. Moreover, both MEKK2 and MEKK3 coimmunoprecipitated with endogenous WNK1 from cell lysates. WNK1 phosphorylated both MEKK2 and -3 in vitro, and MEKK3 was activated by WNK1 in 293 cells. Finally, ERK5 activation by epidermal growth factor was attenuated by suppression of WNK1 expression using small interfering RNA. Taken together, these results place WNK1 in the ERK5 MAP kinase pathway upstream of MEKK2/3.  相似文献   
28.
Synthetic biology, with its goal of designing biological entities for wide-ranging purposes, remains a field of intensive research interest. However, the vast complexity of biological systems has heretofore rendered rational design prohibitively difficult. As a result, directed evolution remains a valuable tool for synthetic biology, enabling the identification of desired functionalities from large libraries of variants. This review highlights the most recent advances in the use of directed evolution in synthetic biology, focusing on new techniques and applications at the pathway and genome scale.  相似文献   
29.
Synaptic plasticity is the dynamic regulation of the strength of synaptic communication between nerve cells. It is central to neuronal development as well as experience-dependent remodeling of the adult nervous system as occurs during memory formation. Aberrant forms of synaptic plasticity also accompany a variety of neurological and psychiatric diseases, and unraveling the biological basis of synaptic plasticity has been a major goal in neurobiology research. The biochemical and structural mechanisms underlying different forms of synaptic plasticity are complex, involving multiple signaling cascades, reconfigurations of structural proteins and the trafficking of synaptic proteins. As such, proteomics should be a valuable tool in dissecting the molecular events underlying normal and disease-related forms of plasticity. In fact, progress in this area has been disappointingly slow. We discuss the particular challenges associated with proteomic interrogation of synaptic plasticity processes and outline ways in which we believe proteomics may advance the field over the next few years. We pay particular attention to technical advances being made in small sample proteomics and the advent of proteomic imaging in studying brain plasticity.  相似文献   
30.
Polysaccharide processing and presentation by the MHCII pathway   总被引:9,自引:0,他引:9  
Cobb BA  Wang Q  Tzianabos AO  Kasper DL 《Cell》2004,117(5):677-687
The adaptive immune system functions through the combined action of antigen-presenting cells (APCs) and T cells. Specifically, class I major histocompatibility complex antigen presentation to CD8(+) T cells is limited to proteosome-generated peptides from intracellular pathogens while the class II (MHCII) endocytic pathway presents only proteolytic peptides from extracellular pathogens to CD4(+) T cells. Carbohydrates have been thought to stimulate immune responses independently of T cells; however, zwitterionic polysaccharides (ZPSs) from the capsules of some bacteria can activate CD4(+) T cells. Here we show that ZPSs are processed to low molecular weight carbohydrates by a nitric oxide-mediated mechanism and presented to T cells through the MHCII endocytic pathway. Furthermore, these carbohydrates bind to MHCII inside APCs for presentation to T cells. Our observations begin to elucidate the mechanisms by which some carbohydrates induce important immunologic responses through T cell activation, suggesting a fundamental shift in the MHCII presentation paradigm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号