首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   56篇
  2018年   4篇
  2016年   4篇
  2015年   11篇
  2014年   6篇
  2013年   6篇
  2012年   10篇
  2011年   13篇
  2010年   5篇
  2009年   12篇
  2008年   9篇
  2007年   16篇
  2006年   17篇
  2005年   15篇
  2004年   13篇
  2003年   14篇
  2002年   23篇
  2001年   10篇
  2000年   12篇
  1999年   6篇
  1998年   6篇
  1993年   4篇
  1992年   11篇
  1991年   9篇
  1987年   5篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1980年   11篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   9篇
  1972年   6篇
  1971年   8篇
  1970年   6篇
  1969年   5篇
  1967年   7篇
  1964年   4篇
  1962年   3篇
  1961年   3篇
  1959年   4篇
  1958年   3篇
  1951年   3篇
  1943年   5篇
  1941年   3篇
  1940年   3篇
  1931年   3篇
排序方式: 共有426条查询结果,搜索用时 15 毫秒
21.
22.
23.
The genetic variation of Trigonobalanus verticillata, the most recently described genus of Fagaceae, was studied using chloroplast DNA sequences and AFLP fingerprinting. This species has a restricted distribution that is known to include seven localities in tropical lower montane forests in Malaysia and Indonesia. A total of 75 individuals were collected from Bario, Kinabalu, and Fraser's Hill in Malaysia. The sequences of rbcL, matK, and three non-coding regions (atpB-rbcL spacer, trnL intron, and trnL-trnF spacer) were determined for 19 individuals from these populations. We found a total of 30 nucleotide substitutions and four length variations, which allowed identification of three haplotypes characterizing each population. No substitutions were detected within populations, while the tandem repeats in the trnL -trnF spacer had a variable repeat number of a 20-bp motif only in Kinabalu. The differentiation of the populations inferred from the cpDNA molecular clock calibrated with paleontological data was estimated to be 8.3 MYA between Bario and Kinabalu, and 16.7 MYA between Fraser's Hill and the other populations. In AFLP analysis, four selective primer pairs yielded a total of 431 loci, of which 340 (78.9%) were polymorphic. The results showed relatively high gene diversity (H(S) = 0.153 and H(T) = 0.198) and nucleotide diversity (pi(S) = 0.0132 and pi(T) = 0.0168) both within and among the populations. Although the cpDNA data suggest that little or no gene flow occurred between the populations via seeds, the fixation index estimated from AFLP data (F(ST) = 0.153 and N(ST) = 0.214) implies that some gene flow occurs between populations, possibly through pollen transfer.  相似文献   
24.
Two new water-soluble, porphyrazine (Pz) dyes containing an isothiocyanate function for covalent linking have each been prepared by cross condensation of two different aromatic dinitriles, one containing carboxylates for solubilizing purposes and the other containing a nitro group for conversion into the labeling function. The initial mononitrotricarboxylato Pzs have been purified to homogeneity from the mixture of Pz congeners formed in the condensation reaction by anion exchange chromatography. The phthalocyanine dye 1 has an absorption maxima at 683 nm while the trinaphthoporphyrazine dye 2 has an absorption maxima at 755 nm, due to the increased size of the aromatic system. Both dyes were successfully conjugated to oligonucleotide primers, showing their potential for use in near-infrared-based DNA diagnostic applications.  相似文献   
25.
Pseudomonas aeruginosa azurin is a blue-copper protein with a Greek-key fold. Removal of copper produces an apoprotein with the same structure as holoazurin. To address the effects on thermodynamic stability and folding dynamics caused by small cavities in a beta-barrel, we have studied the behavior of the apo-forms of wild-type and two mutant (His-46-Gly and His-117-Gly) azurins. The equilibrium- and kinetic-folding and unfolding reactions appear as two-state processes for all three proteins. The thermodynamic stability of the two mutants is significantly decreased as compared with the stability of wild-type azurin, in accord with cavities in or near the hydrophobic interior having an overall destabilizing effect. Large differences are also found in the unfolding rates: the mutants unfold much faster than wild-type azurin. In contrast, the folding-rate constants are almost identical for the three proteins and closely match the rate-constant predicted from the native-state topology of azurin. We conclude that the topology is more important than equilibrium stability in determining the folding speed of azurin.  相似文献   
26.
27.
28.
29.
Ex situ culture of human gestational tissues has been routinely used as a model to investigate tissue function. The objective of this study was to determine the effect of varying oxygen concentrations on human term placental explants over a 24-h time period. Specifically, the effect of incubating placental explants in oxygen concentrations of 8%, 21% or 95% on tissue viability, metabolism and cell death was measured by assessing glucose consumption, lactate production, release of lactate dehydrogenase, parathyroid hormone-related protein (PTHrP), tumour necrosis factor-alpha (TNF-α) and 8-isoprostane, immunoreactivity for cleaved-caspase-9 and immunohistochemistry for the caspase-3-cleaved cytokeratin-18 neoepitope, M30. Exposure to higher oxygen concentrations significantly increased the rates of glucose consumption and lactate production. Apoptosis was significantly increased under conditions of higher oxygen as evidenced by increased M30 in placental explant sections. Similarly, hyperoxia significantly increased the releases of PTHrP, TNF-α and 8-isoprostane. Thus, incubation of placental explants with oxygen concentrations of 95% and, to a lesser extent, 21% oxygen was associated with the modulation of multiple cellular response pathways including those associated with tissue viability and cell death. These data are consistent with the hypothesis that hyperoxia activates pathways and mechanisms involved in cellular metabolism, necrosis and apoptosis, thereby shifting the balance from a steady state towards cell death.  相似文献   
30.
DNA sequencing: bench to bedside and beyond   总被引:4,自引:1,他引:3  
Fifteen years elapsed between the discovery of the double helix (1953) and the first DNA sequencing (1968). Modern DNA sequencing began in 1977, with development of the chemical method of Maxam and Gilbert and the dideoxy method of Sanger, Nicklen and Coulson, and with the first complete DNA sequence (phage ϕX174), which demonstrated that sequence could give profound insights into genetic organization. Incremental improvements allowed sequencing of molecules >200 kb (human cytomegalovirus) leading to an avalanche of data that demanded computational analysis and spawned the field of bioinformatics. The US Human Genome Project spurred sequencing activity. By 1992 the first ‘sequencing factory’ was established, and others soon followed. The first complete cellular genome sequences, from bacteria, appeared in 1995 and other eubacterial, archaebacterial and eukaryotic genomes were soon sequenced. Competition between the public Human Genome Project and Celera Genomics produced working drafts of the human genome sequence, published in 2001, but refinement and analysis of the human genome sequence will continue for the foreseeable future. New ‘massively parallel’ sequencing methods are greatly increasing sequencing capacity, but further innovations are needed to achieve the ‘thousand dollar genome’ that many feel is prerequisite to personalized genomic medicine. These advances will also allow new approaches to a variety of problems in biology, evolution and the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号