首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   9篇
  2024年   1篇
  2022年   1篇
  2019年   2篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   4篇
  2012年   4篇
  2011年   8篇
  2010年   3篇
  2009年   11篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
  1965年   1篇
排序方式: 共有129条查询结果,搜索用时 343 毫秒
91.
We present the results of a rational mutagenesis and binding-affinity study of the three-stranded beta-sheet-DNA interface in the complex formed by the amino-terminal DNA-binding domain of the Tn916 integrase protein and its cognate binding site. The relative importance of interfacial contacts present in its NMR-derived solution structure have been tested through mutagenesis, fluorescence anisotropy, and intrinsic quenching DNA-binding assays. We find that seven protein-DNA hydrogen bonds (two base-specific and five to phosphate groups) significantly contribute to the level of affinity. These interactions span the entire DNA-binding surface on the protein, but primarily originate from residues in only two strands of the sheet and loop L2. Interestingly, we show that highly populated, precisely defined intermolecular hydrogen bonds in the ensemble of conformers are invariably important for DNA-binding, implying that NMR-derived solution structures provide direct insight into the energetics of recognition. Unusual three-stranded beta-sheet-DNA interfaces have recently been discovered in three unrelated protein-DNA complexes. A comparative analysis of these structures reveals similar sheet positioning, the presence of two invariant interfacial contacts to the phosphodiester backbone, and two semi-conserved base-specific hydrogen bonds. Two of these conserved contacts significantly contribute to the affinity of the integrase-DNA complex, suggesting that the three-stranded beta-sheet DNA-binding motif exhibits conserved principles of recognition.  相似文献   
92.
The excisionase (Xis) protein from bacteriophage lambda is the best characterized member of a large family of recombination directionality factors that control integrase-mediated DNA rearrangements. It triggers phage excision by cooperatively binding to sites X1 and X2 within the phage, bending DNA significantly and recruiting the phage-encoded integrase (Int) protein to site P2. We have determined the co-crystal structure of Xis with its X2 DNA-binding site at 1.7A resolution. Xis forms a unique winged-helix motif that interacts with the major and minor grooves of its binding site using an alpha-helix and an ordered beta-hairpin (wing), respectively. Recognition is achieved through an elaborate water-mediated hydrogen-bonding network at the major groove interface, while the preformed hairpin forms largely non-specific interactions with the minor groove. The structure of the complex provides insights into how Xis recruits Int cooperatively, and suggests a plausible mechanism by which it may distort longer DNA fragments significantly. It reveals a surface on the protein that is likely to mediate Xis-Xis interactions required for its cooperative binding to DNA.  相似文献   
93.
The DNA binding domain of the transposon Tn916 integrase (INT-DBD) binds to its DNA target site by positioning the face of a three-stranded antiparallel beta-sheet within the major groove. Binding of INT-DBD to a 13 base pair duplex DNA target site was studied by isothermal titration calorimetry, differential scanning calorimetry, thermal melting followed by circular dichroism spectroscopy, and fluorescence spectroscopy. The observed heat capacity change accompanying the association reaction (DeltaC(p)) is temperature-dependent, decreasing from -1.4 kJ K(-1) mol(-1) at 4 degrees C to -2.9 kJ K(-1) mol(-1) at 30 degrees C. The reason is that the partial molar heat capacities of the free protein, the free DNA duplex, and the protein-DNA complex are not changing in parallel when the temperature increases and that thermal motions of the protein and the DNA are restricted in the complex. After correction for this effect, DeltaC(p) is -1.8 kJ K(-1) mol(-1) and temperature-independent. However, this value is still higher than DeltaC(p) of -1.2 kJ K(-1) mol(-1) estimated by semiempirical methods from dehydration of surface area buried at the complex interface. We propose that the discrepancy between the measured and the structure-based prediction of binding energetics is caused by incomplete dehydration of polar groups in the complex. In support, we identify cavities at the interface that are large enough to accommodate approximately 10 water molecules. Our results highlight the difficulties of structure-based prediction of DeltaC(p) (and other thermodynamic parameters) and emphasize how important it is to consider changes of thermal motions and soft vibrational modi in protein-DNA association reactions. This requires not only a detailed investigation of the energetics of the complex but also of the folding thermodynamics of the protein and the DNA alone, which are described in the accompanying paper [Milev et al. (2003) Biochemistry 42, 3492-3502].  相似文献   
94.
Sequence-specific DNA recognition by bacterial integrase Tn916 involves structural rearrangements of both the protein and the DNA duplex. Energetic contributions from changes of conformation, thermal motions and soft vibrational modi of the protein, the DNA, and the complex significantly influence the energetic profile of protein-DNA association. Understanding the energetics of such a complicated system requires not only a detailed calorimetric investigation of the association reaction but also of the components in isolation. Here we report on the conformational stability of the integrase Tn916 DNA binding domain and its cognate 13 base pair target DNA duplex. Using a combination of temperature and denaturant induced unfolding experiments, we find that the 74-residue DNA binding domain is compact and unfolds cooperatively with only small deviation from two-state behavior. Scanning calorimetry reveals an increase of the heat capacity of the native protein attributable to increased thermal fluctuations. From the combined calorimetric and spectroscopic experiments, the parameters of protein unfolding are T(m) = 43.8 +/- 0.3 degrees C, DeltaH(m) = 255 +/- 18 kJ mol(-1), DeltaS(m) = 0.80 +/- 0.06 kJ mol(-1), and DeltaC(p) = 5.0 +/- 0.8 kJ K(-1) mol(-1). The DNA target duplex displays a thermodynamic signature typical of short oligonucleotide duplexes: significant heat absorption due to end fraying and twisting precedes cooperative unfolding and dissociation. The parameters for DNA unfolding and dissociation are DeltaH(m) = 335 +/- 4 kJ mol(-1) and DeltaC(p) = 2.7 +/- 0.9 kJ K(-(1) mol(-1). The results reported here have been instrumental in interpreting the thermodynamic features of the association reaction of the integrase with its 13 base pair target DNA duplex reported in the accompanying paper [Milev et al. (2003) Biochemistry 42, 3481-3491].  相似文献   
95.
Upon induction of a bacteriophage lambda lysogen, a site-specific recombination reaction excises the phage genome from the chromosome of its bacterial host. A critical regulator of this process is the phage-encoded excisionase (Xis) protein, which functions both as a DNA architectural factor and by cooperatively recruiting integrase to an adjacent binding site specifically required for excision. Here we present the three-dimensional structure of Xis and the results of a structure-based mutagenesis study to define the molecular basis of its function. Xis adopts an unusual "winged"-helix motif that is modeled to interact with the major- and minor-grooves of its binding site through a single alpha-helix and loop structure ("wing"), respectively. The C-terminal tail of Xis, which is required for cooperative binding with integrase, is unstructured in the absence of DNA. We propose that asymmetric bending of DNA by Xis positions its unstructured C-terminal tail for direct contacts with the N-terminal DNA-binding domain of integrase and that an ensuing disordered to ordered transition of the tail may act to stabilize the formation of the tripartite integrase-Xis-DNA complex required for phage excision.  相似文献   
96.
Tn916 and related conjugative transposons are clinically significant vectors for the transfer of antibiotic resistance among human pathogens, and they excise from their donor organisms using the transposon-encoded integrase ((Tn916)Int) and excisionase ((Tn916)Xis) proteins. In this study, we have investigated the role of the (Tn916)Xis protein in stimulating excisive recombination. The functional relevance of (Tn916)Xis binding sites on the arms of the transposon has been assessed in vivo using a transposon excision assay. Our results indicate that in Escherichia coli the stimulatory effect of the (Tn916)Xis protein is mediated by sequence-specific binding to either of its two binding sites on the left arm of the transposon. These sites lie in between the core and arm sites recognized by (Tn916)Int, suggesting that the (Tn916)Xis protein enhances excision in a manner similar to the excisionase protein of bacteriophage lambda, serving an architectural role in the stabilization of protein-nucleic acid structures required for strand synapsis. However, our finding that excision in E. coli is significantly enhanced by the host factor HU, but does not depend on the integration host factor or the factor for inversion stimulation, defines clear mechanistic differences between Tn916 and bacteriophage lambda recombination.  相似文献   
97.
98.
The specific interaction of hevein with GlcNAc-containing oligosaccharides has been analyzed by1H-NMR spectroscopy. The association constants for the binding of hevein to a variety of ligands have been estimated from1H-NMR titration experiments. The association constants increase in the order GlcNAc-alpha(1-->6)-Man < GlcNAc < benzyl-beta-GlcNAc < p-nitrophenyl-beta-GlcNAc < chitobiose < p- nitrophenyl-beta-chitobioside < methyl-beta-chitobioside < chitotriose. Entropy and enthalpy of binding for different complexes have been obtained from van't Hoff analysis. The driving force for the binding process is provided by a negative DeltaH0which is partially compensated by negative DeltaS0. These negative signs indicate that hydrogen bonding and van der Waals forces are the major interactions stabilizing the complex. NOESY NMR experiments in water solution provided 475 accurate protein proton-proton distance constraints after employing the MARDIGRAS program. In addition, 15 unambiguous protein/carbohydrate NOEs were detected. All the experimental constraints were used in a refinement protocol including restrained molecular dynamics in order to determine the highly refined solution conformation of this protein- carbohydrate complex. With regard to the NMR structure of the free protein, no important changes in the protein nOe's were observed, indicating that carbohydrate-induced conformational changes are small. The average backbone rmsd of the 20 refined structures was 0.055 nm, while the heavy atom rmsd was 0.116 nm. It can be deduced that both hydrogen bonds and van der Waals contacts confer stability to the complex. A comparison of the three-dimensional structure of hevein in solution to those reported for wheat germ agglutinin (WGA) and hevein itself in the solid state has also been performed. The polypeptide conformation has also been compared to the NMR-derived structure of a smaller antifungical peptide, Ac-AMP2.   相似文献   
99.
Culturable bacteria from the deep subsurface (179 m) at Cerro Negro, New Mexico were isolated and characterized. The average number of viable aerobic bacteria was estimated to be 5×105g–1 of sediment, but only about 0.1% of these could be recovered on agar medium when incubated under aerobic conditions. Of 158 strains isolated from this depth, 92 were characterized by cellular fatty acid profiles (FAME), 36 by analysis of partial 16S rDNA sequences, and 44 by rep-PCR genome fingerprint analysis using three different sets of oligonucleotide primers (REP, BOX, or ERIC). These analyses showed the majority of isolates (67%) were Gram-positive bacteria and primarily members of genera with a high %G+C DNA. The remaining isolates were -subdivisionProteobacteria (19%) and members of the flavobacteria group (14%). The diversity indices based on these different methods of characterization were very high suggesting this subsurface habitat harbors a highly diverse microbial community.  相似文献   
100.
We have constructed restriction-site maps of the mtDNAs in 13 species and one subspecies of the Drosophila obscura group. The traditional division of this group into two subgroups (affinis and obscura) does not correspond to the phylogeny of the group, which shows two well- defined clusters (the Nearctic affinis and pseudoobscura subgroups) plus a very heterogeneous set of anciently diverged species (the Palearctic obscura subgroup). The mtDNA of Drosophila exhibits a tendency to evolve toward high A+T values. This leads to a "saturation" effect that (1) begets an apparent decrease in the rate of evolution as the time since the divergence of taxa increases and (2) reduces the value that mtDNA restriction analysis has for the phylogenetic reconstruction of Drosophila species that are not closely related.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号