首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   20篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   7篇
  2015年   12篇
  2014年   12篇
  2013年   18篇
  2012年   22篇
  2011年   21篇
  2010年   7篇
  2009年   11篇
  2008年   14篇
  2007年   22篇
  2006年   10篇
  2005年   12篇
  2004年   11篇
  2003年   5篇
  2002年   7篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1976年   1篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
141.
Two new ligands of transition metal cations based on galactose-derived scaffolds were synthesised: 1,5-anhydro-2-deoxy-3,4,6-tri-O-(2-picolyl)-D-galactitol and methyl 2-deoxy-3,4,6-tri-O-(2-picolyl)-alpha-D-galactopyranoside. These ligands permitted the isolation as single crystals of a Co(II) and a Ni(II) complex, respectively. The structures of both complexes were determined by X-ray crystallography showing a coordination sphere including sugar-bound oxygen atoms. The sugar-derived ligands were found to be in both cases in high energy conformations in the crystal structures of the complexes. These conformations contain an arrangement of sugar-bound oxygen atoms similar to those observed in polyol-metal and carbohydrate-metal complexes.  相似文献   
142.
The chemokine fractalkine (CX(3)CL1) is constitutively expressed by central neurons, regulating microglial responses including chemotaxis, activation, and toxicity. Through the activation of its own specific receptor, CX(3)CR1, CX(3)CL1 exerts both neuroprotection against glutamate (Glu) toxicity and neuromodulation of the glutamatergic synaptic transmission in hippocampal neurons. Using cultured hippocampal neuronal cell preparations, obtained from CX(3)CR1(-/-) (CX(3)CR1(GFP/GFP)) mice, we report that these same effects are mimicked by exposing neurons to a medium conditioned with CX(3)CL1-treated mouse microglial cell line BV2 (BV2-st medium). Furthermore, CX(3)CL1-induced neuroprotection from Glu toxicity is mediated through the adenosine receptor 1 (AR(1)), being blocked by neuronal cell preparations treatment with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a specific inhibitor of AR(1), and mimicked by both adenosine and the specific AR(1) agonist 2-chloro-N(6)-cyclopentyladenosine. Similarly, experiments from whole-cell patch-clamped hippocampal neurons in culture, obtained from CX(3)CR1(+/+) mice, show that CX(3)CL1-induced depression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- (AMPA-) type Glu receptor-mediated current (AMPA-current), is associated with AR(1) activity being blocked by DPCPX and mimicked by adenosine. Furthermore, BV2-st medium induced a similar AMPA-current depression in CX(3)CR1(GFP/GFP) hippocampal neurons and this depression was again blocked by DPCPX. We also report that CX(3)CL1 induced a significant release of adenosine from microglial BV2 cells, as measured by HPLC analysis. We demonstrate that (i) CX(3)CL1, along with AR(1), are critical players for counteracting Glu-mediated neurotoxicity in the brain and (ii) AR(1) mediates neuromodulatory action of CX(3)CL1 on hippocampal neurons.  相似文献   
143.
144.
Several studies have shown that the accumulation of β‐amyloid peptides in the brain parenchyma or vessel wall generates an inflammatory environment. Some even suggest that there is a cause‐and‐effect relationship between inflammation and the development of Alzheimer's disease and/or cerebral amyloid angiopathy (CAA). Here, we studied the ability of wild‐type Aβ1‐40‐peptide (the main amyloid peptide that accumulates in the vessel wall in sporadic forms of CAA) to modulate the phenotypic transition of vascular smooth muscle cells (VSMCs) toward an inflammatory/de‐differentiated state. We found that Aβ1‐40‐peptide alone neither induces an inflammatory response, nor decreases the expression of contractile markers; however, the inflammatory response of VSMCs exposed to Aβ1‐40‐peptide prior to the addition of the pro‐inflammatory cytokine IL‐1β is greatly intensified compared with IL‐1β‐treated VSMCs previously un‐exposed to Aβ1‐40‐peptide. Similar conclusions could be drawn when tracking the decline of contractile markers. Furthermore, we found that the mechanism of this potentiation highly depends on an Aβ1‐40 preactivation of the PI3Kinase and possibly NFκB pathway; indeed, blocking the activation of these pathways during Aβ1‐40‐peptide treatment completely suppressed the observed potentiation. Finally, strengthening the possible in vivo relevance of our findings, we evidenced that endothelial cells exposed to Aβ1‐40‐peptide generate an inflammatory context and have similar effects than the ones described with IL‐1β. These results reinforce the idea that intraparietal amyloid deposits triggering adhesion molecules in endothelial cells, contribute to the transition of VSMCs to an inflammatory/de‐differentiated phenotype. Therefore, we suggest that acute inflammatory episodes may increase vascular alterations and contribute to the ontogenesis of CAA.  相似文献   
145.
Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.  相似文献   
146.

Background

In future Best Linear Unbiased Prediction (BLUP) evaluations of dairy cattle, genomic selection of young sires will cause evaluation biases and loss of accuracy once the selected ones get progeny.

Methods

To avoid such bias in the estimation of breeding values, we propose to include information on all genotyped bulls, including the culled ones, in BLUP evaluations. Estimated breeding values based on genomic information were converted into genomic pseudo-performances and then analyzed simultaneously with actual performances. Using simulations based on actual data from the French Holstein population, bias and accuracy of BLUP evaluations were computed for young sires undergoing progeny testing or genomic pre-selection. For bulls pre-selected based on their genomic profile, three different types of information can be included in the BLUP evaluations: (1) data from pre-selected genotyped candidate bulls with actual performances on their daughters, (2) data from bulls with both actual and genomic pseudo-performances, or (3) data from all the genotyped candidates with genomic pseudo-performances. The effects of different levels of heritability, genomic pre-selection intensity and accuracy of genomic evaluation were considered.

Results

Including information from all the genotyped candidates, i.e. genomic pseudo-performances for both selected and culled candidates, removed bias from genetic evaluation and increased accuracy. This approach was effective regardless of the magnitude of the initial bias and as long as the accuracy of the genomic evaluations was sufficiently high.

Conclusions

The proposed method can be easily and quickly implemented in BLUP evaluations at the national level, although some improvement is necessary to more accurately propagate genomic information from genotyped to non-genotyped animals. In addition, it is a convenient method to combine direct genomic, phenotypic and pedigree-based information in a multiple-step procedure.  相似文献   
147.
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.  相似文献   
148.
The fetal and neonatal development of male germ cells (gonocytes) is a poorly understood but crucial process for establishing fertility. In rodents, gonocytes go through two phases of proliferation accompanied by apoptosis and separated by a quiescent period during the end of fetal development. P63 is a member of the P53 gene family that yields six isoforms. We detected only the p63 protein and no p53 and p73 in the nucleus of the gonocytes of mouse testes. We report for the first time the ontogeny of each p63 mRNA isoform during testis development. We observed a strong expression of p63gamma mRNA and protein when gonocytes are in the quiescent period. In vitro treatment with retinoic acid prevented gonocytes from entering the quiescent period and was correlated with a reduced production of p63gamma isoform mRNA. We investigated the function of p63 by studying the testicular phenotype of P63-null mice. P63 invalidation slightly, but significantly increased the number of gonocytes counted during the quiescent period. As P63-null animals die at birth we used an original organ culture that mimicked neonatal in vivo development to study further the testicular development. P63 invalidation resulted in a sharply increased number of gonocytes during the culture period due to a decrease in spontaneous apoptosis with no change in proliferation. P63 invalidation also caused abnormal morphologies in the germ cells that were also found in P63(+/-) adult male mice. Thus, p63 appears as an important regulator of germ cell development.  相似文献   
149.

Background

Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented.

Principal Findings

We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before).

Conclusions

Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.  相似文献   
150.
We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号