全文获取类型
收费全文 | 224篇 |
免费 | 19篇 |
专业分类
243篇 |
出版年
2023年 | 1篇 |
2022年 | 4篇 |
2021年 | 6篇 |
2020年 | 3篇 |
2019年 | 5篇 |
2018年 | 1篇 |
2017年 | 5篇 |
2016年 | 8篇 |
2015年 | 12篇 |
2014年 | 13篇 |
2013年 | 18篇 |
2012年 | 24篇 |
2011年 | 21篇 |
2010年 | 7篇 |
2009年 | 13篇 |
2008年 | 16篇 |
2007年 | 24篇 |
2006年 | 10篇 |
2005年 | 12篇 |
2004年 | 11篇 |
2003年 | 5篇 |
2002年 | 7篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有243条查询结果,搜索用时 0 毫秒
101.
Alina von Thaden Carsten Nowak Annika Tiesmeyer Tobias E. Reiners Paulo C. Alves Leslie A. Lyons Federica Mattucci Ettore Randi Margherita Cragnolini Jos Galin Zsolt Hegyeli Andrew C. Kitchener Clotilde Lambinet Jos M. Lucas Thomas Mlich Luana Ramos Vinciane Schockert Berardino Cocchiararo 《Molecular ecology resources》2020,20(3):662-680
The genomic era has led to an unprecedented increase in the availability of genome‐wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation. 相似文献
102.
Haidong Yao Xue Chen Muhammad Kashif Ting Wang Mohamed X. Ibrahim Elin Tüksammel Gwladys Revêchon Maria Eriksson Clotilde Wiel Martin O. Bergo 《Aging cell》2020,19(8)
Several progeroid disorders are caused by deficiency in the endoprotease ZMPSTE24 which leads to accumulation of prelamin A at the nuclear envelope. ZMPSTE24 cleaves prelamin A twice: at the third carboxyl‐terminal amino acid following farnesylation of a –CSIM motif; and 15 residues upstream to produce mature lamin A. The carboxyl‐terminal cleavage can also be performed by RAS‐converting enzyme 1 (RCE1) but little is known about the importance of this cleavage for the ability of prelamin A to cause disease. Here, we found that knockout of RCE1 delayed senescence and increased proliferation of ZMPSTE24‐deficient fibroblasts from a patient with non‐classical Hutchinson‐Gilford progeria syndrome (HGPS), but did not influence proliferation of classical LMNA‐mutant HGPS cells. Knockout of Rce1 in Zmpste24‐deficient mice at postnatal week 4–5 increased body weight and doubled the median survival time. The absence of Rce1 in Zmpste24‐deficient fibroblasts did not influence nuclear shape but reduced an interaction between prelamin A and AKT which activated AKT‐mTOR signaling and was required for the increased proliferation. Prelamin A levels increased in Rce1‐deficient cells due to a slower turnover rate but its localization at the nuclear rim was unaffected. These results strengthen the idea that the presence of misshapen nuclei does not prevent phenotype improvement and suggest that targeting RCE1 might be useful for treating the rare progeroid disorders associated with ZMPSTE24 deficiency. 相似文献
103.
104.
Cancio-Lonches C Yocupicio-Monroy M Sandoval-Jaime C Galvan-Mendoza I Ureña L Vashist S Goodfellow I Salas-Benito J Gutiérrez-Escolano AL 《Journal of virology》2011,85(16):8056-8068
Cellular proteins play many important roles during the life cycle of all viruses. Specifically, host cell nucleic acid-binding proteins interact with viral components of positive-stranded RNA viruses and regulate viral translation, as well as RNA replication. Here, we report that nucleolin, a ubiquitous multifunctional nucleolar shuttling phosphoprotein, interacts with the Norwalk virus and feline calicivirus (FCV) genomic 3' untranslated regions (UTRs). Nucleolin can also form a complex in vitro with recombinant Norwalk virus NS6 and -7 (NS6/7) and can be copurified with the analogous protein from feline calicivirus (p76 or NS6/7) from infected feline kidney cells. Nucleolin RNA levels or protein were not modified during FCV infection; however, as a consequence of the infection, nucleolin was seen to relocalize from the nucleoli to the nucleoplasm, as well as to the perinuclear area where it colocalizes with the feline calicivirus NS6/7 protein. In addition, antibodies to nucleolin were able to precipitate viral RNA from feline calicivirus-infected cells, indicating a direct or indirect association of nucleolin with the viral RNA during virus replication. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a reduction of the cytopathic effect and virus yield in CrFK cells. Taken together, these results demonstrate that nucleolin is a nucleolar component that interacts with viral RNA and NS6/7 and is required for feline calicivirus replication. 相似文献
105.
Ramírez-Macías I Marín C Es-Samti H Fernández A Guardia JJ Zentar H Agil A Chahboun R Alvarez-Manzaneda E Sánchez-Moreno M 《Parasitology international》2012,61(3):405-413
The in vitro leishmanicidal (Leishmania infantum and Leishmania braziliensis) and trypanocidal (Trypanosoma cruzi) activities of different compounds were evaluated. These compounds, of vegetal origin but synthesised in our laboratory, included five taiwaniaquinoid derivatives (S-567; S-569; S-589; S-602 and A-246) and one abietane quinone (P-1). The in vitro activity of the compounds on extracellular and intracellular forms of the two Leishmania species and T. cruzi was assayed. Infectivity and cytotoxicity tests for the Leishmania species were conducted on J774.2 macrophage cells using Glucantime as the reference drug. From all the compounds assayed, the derivatives P-1>S-567 were more active and less toxic than Glucantime. Infection rates and amastigote means indicated that these two compounds were the most active in both Leishmania species. In the case of T. cruzi, the best derivatives were P-1 and S-567, at the same levels as for the Leishmania species. These compounds exhibited the most potent anti-proliferative activity against the extracellular vector form (the epimastigote), the extracellular host form (the trypomastigote), and the intracellular host form (the amastigote), with lower toxicity than that of the reference drug Benznidazole. Metabolite excretion studies showed that alterations mainly at the level of the mitochondria may explain observed metabolic changes in succinate and acetate production, perhaps due to the disturbance of enzymes involved in sugar metabolism within the mitochondrion. The in vivo studies for T. cruzi provided results consistent with those found in vitro. No signs of toxicity were detected in mice treated with the compounds tested, and the parasitic charge was slightly lower than in the control. The effects of these two compounds were also demonstrated with the change in the anti-T. cruzi antibody levels during the chronic stage. 相似文献
106.
Background
The glycolytic phosphoglycerate mutases exist as non-homologous isofunctional enzymes (NISE) having independent evolutionary origins and no similarity in primary sequence, 3D structure, or catalytic mechanism. Cofactor-dependent PGM (dPGM) requires 2,3-bisphosphoglycerate for activity; cofactor-independent PGM (iPGM) does not. The PGM profile of any given bacterium is unpredictable and some organisms such as Escherichia coli encode both forms.Methods/Principal Findings
To examine the distribution of PGM NISE throughout the Bacteria, and gain insight into the evolutionary processes that shape their phyletic profiles, we searched bacterial genome sequences for the presence of dPGM and iPGM. Both forms exhibited patchy distributions throughout the bacterial domain. Species within the same genus, or even strains of the same species, frequently differ in their PGM repertoire. The distribution is further complicated by the common occurrence of dPGM paralogs, while iPGM paralogs are rare. Larger genomes are more likely to accommodate PGM paralogs or both NISE forms. Lateral gene transfers have shaped the PGM profiles with intradomain and interdomain transfers apparent. Archaeal-type iPGM was identified in many bacteria, often as the sole PGM. To address the function of PGM NISE in an organism encoding both forms, we analyzed recombinant enzymes from E. coli. Both NISE were active mutases, but the specific activity of dPGM greatly exceeded that of iPGM, which showed highest activity in the presence of manganese. We created PGM null mutants in E. coli and discovered the ΔdPGM mutant grew slowly due to a delay in exiting stationary phase. Overexpression of dPGM or iPGM overcame this defect.Conclusions/Significance
Our biochemical and genetic analyses in E. coli firmly establish dPGM and iPGM as NISE. Metabolic redundancy is indicated since only larger genomes encode both forms. Non-orthologous gene displacement can fully account for the non-uniform PGM distribution we report across the bacterial domain. 相似文献107.
Blaise R Mateo V Rouxel C Zaccarini F Glorian M Béréziat G Golubkov VS Limon I 《Aging cell》2012,11(3):384-393
Cerebral amyloid angiopathy (CAA) is an important cause of intracerebral hemorrhages in the elderly, characterized by amyloid-β (Aβ) peptide accumulating in central nervous system blood vessels. Within the vessel walls, Aβ-peptide deposits [composed mainly of wild-type (WT) Aβ(1-40) peptide in sporadic forms] induce impaired adhesion of vascular smooth muscle cells (VSMCs) to the extracellular matrix (ECM) associated with their degeneration. This process often results in a loss of blood vessel wall integrity and ultimately translates into cerebral ischemia and microhemorrhages, both clinical features of CAA. In this study, we decipher the molecular mechanism of matrix metalloprotease (MMP)-2 activation in WT-Aβ(1-40) -treated VSMC and provide evidence that MMP activity, although playing a critical role in cell detachment disrupting ECM components, is not involved in the WT-Aβ(1-40) -induced degeneration of VSMCs. Indeed, whereas this peptide clearly induced VSMC apoptosis, neither preventing MMP-2 activity nor hampering the expression of membrane type1-MMP, or preventing tissue inhibitors of MMPs-2 (TIMP-2) recruitment (two proteins evidenced here as involved in MMP-2 activation), reduced the number of dead cells. Even the use of broad-range MMP inhibitors (GM6001 and Batimastat) did not affect WT-Aβ(1-40) -induced cell apoptosis. Our results, in contrast to those obtained using the Aβ(1-40) Dutch variant suggesting a link between MMP-2 activity, VSMC mortality and degradation of specific matrix components, indicate that the ontogenesis of the Dutch familial and sporadic forms of CAAs is different. ECM degradation and VSMC degeneration would be tightly connected in the Dutch familial form while being two independent processes in sporadic forms of CAA. 相似文献
108.
109.
Marchetti S Gimond C Chambard JC Touboul T Roux D Pouysségur J Pagès G 《Molecular and cellular biology》2005,25(2):854-864
Mitogen-activated protein (MAP) kinase phosphatases (MKPs) are dual-specificity phosphatases that dephosphorylate phosphothreonine and phosphotyrosine residues within MAP kinases. Here, we describe a novel posttranslational mechanism for regulating MKP-3/Pyst1/DUSP6, a member of the MKP family that is highly specific for extracellular signal-regulated kinase 1 and 2 (ERK1/2) inactivation. Using a fibroblast model in which the expression of either MKP-3 or a more stable MKP-3-green fluorescent protein (GFP) chimera was induced by tetracycline, we found that serum induces the phosphorylation of MKP-3 and its subsequent degradation by the proteasome in a MEK1 and MEK2 (MEK1/2)-ERK1/2-dependent manner. In vitro phosphorylation assays using glutathione S-transferase (GST)-MKP-3 fusion proteins indicated that ERK2 could phosphorylate MKP-3 on serines 159 and 197. Tetracycline-inducible cell clones expressing either single or double serine mutants of MKP-3 or MKP-3-GFP confirmed that these two sites are targeted by the MEK1/2-ERK1/2 module in vivo. Double serine mutants of MKP-3 or MKP-3-GFP were more efficiently protected from degradation than single mutants or wild-type MKP-3, indicating that phosphorylation of either serine by ERK1/2 enhances proteasomal degradation of MKP-3. Hence, double mutation caused a threefold increase in the half-life of MKP-3. Finally, we show that the phosphorylation of MKP-3 has no effect on its catalytic activity. Thus, ERK1/2 exert a positive feedback loop on their own activity by promoting the degradation of MKP-3, one of their major inactivators in the cytosol, a situation opposite to that described for the nuclear phosphatase MKP-1. 相似文献