首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   46篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   12篇
  2012年   16篇
  2011年   17篇
  2010年   15篇
  2009年   6篇
  2008年   11篇
  2007年   9篇
  2006年   10篇
  2005年   9篇
  2004年   9篇
  2003年   4篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1992年   14篇
  1991年   11篇
  1990年   11篇
  1989年   13篇
  1988年   14篇
  1987年   19篇
  1986年   10篇
  1985年   7篇
  1984年   13篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
排序方式: 共有335条查询结果,搜索用时 15 毫秒
91.
The solution structure of recombinant human thioredoxin (105 residues) has been determined by nuclear magnetic resonance (NMR) spectroscopy combined with hybrid distance geometry-dynamical simulated annealing calculations. Approximate interproton distance restraints were derived from nuclear Overhauser effect (NOE) measurements. In addition, a large number of stereospecific assignments for beta-methylene protons and torsion angle restraints for phi, psi, and chi 1 were obtained by using a conformational grid search on the basis of the intraresidue and sequential NOE data in conjunction with 3JHN alpha and 3J alpha beta coupling constants. The structure calculations were based on 1983 approximate interproton distance restraints, 52 hydrogen-bonding restraints for 26 hydrogen bonds, and 98 phi, 71 psi, and 72 chi 1 torsion angle restraints. The 33 final simulated annealing structures obtained had an average atomic rms distribution of the individual structures about the mean coordinate positions of 0.40 +/- 0.06 A for the backbone atoms and 0.78 +/- 0.05 A for all atoms. The solution structure of human thioredoxin consists of a five-stranded beta-sheet surrounded by four alpha-helices, with an active site protrusion containing the two redox-active cysteines. The overall structure is similar to the crystal and NMR structures of oxidized [Katti, S. K., LeMaster, D. M., & Eklund, H. (1990) J. Mol. Biol. 212, 167-184] and reduced [Dyson, J. H., Gippert, G. P., Case, D. A., Holmgren, A., & Wright, P. (1990) Biochemistry 29, 4129-4136] Escherichia coli thioredoxin, respectively, despite the moderate 25% amino acid sequence homology. Several differences, however, can be noted. The human alpha 1 helix is a full turn longer than the corresponding helix in E. coli thioredoxin and is characterized by a more regular helical geometry. The helix labeled alpha 3 in human thioredoxin has its counterpart in the 3(10) helix of the E. coli protein and is also longer in the human protein. In contrast to these structural differences, the conformation of the active site loop in both proteins is very similar, reflecting the perfect sequence identity for a stretch of eight amino acid residues around the redox-active cysteines.  相似文献   
92.
A new hybrid distance space-real space method for determining three-dimensional structures of proteins on the basis of interproton distance restraints is presented. It involves the following steps: (i) the approximate polypeptide fold is obtained by generating a set of substructures comprising only a small subset of atoms by projection from multi-dimensional distance space into three-dimensional cartesian coordinate space using a procedure known as 'embedding'; (ii) all remaining atoms are then added by best fitting extended amino acids one residue at a time to the substructures; (iii) the resulting structures are used as the starting point for real space dynamical simulated annealing calculations. The latter involve heating the system to a high temperature followed by slow cooling in order to overcome potential barriers along the pathway towards the global minimum region. This is carried out by solving Newton's equations of motion. Unlike conventional restrained molecular dynamics, however, the non-bonded interactions are represented by a simple van der Waals repulsion term. The method is illustrated by calculations on crambin (46 residues) and the globular domain of histone H5 (79 residues). It is shown that the hybrid method is more efficient computationally and samples a larger region of conformational space consistent with the experimental data than full metric matrix distance geometry calculations alone, particularly for large systems.  相似文献   
93.
A comparison of the solution structure of the interleukin-8 dimer determined by nuclear magnetic resonance spectroscopy with that of the 2 A resolution X-ray structure, solved by molecular replacement using the solution structure as a starting model, is presented. At the monomer level the atomic root-mean-square difference between the two structures for residues 7 to 72 is approximately 1.1 A for the backbone atoms, approximately 1.6 A for all atoms, and approximately 1 A for all atoms of the internal residues. There are two main regions of difference in the monomer. In the X-ray structure residues 4 to 6 are well ordered and the charged groups of Glu4 of one subunit and Lys23' of the other are in close enough proximity to form an electrostatic interaction. In contrast, these residues are partially disordered in solution and the electrostatic interaction involving Glu4 is replaced by one between Glu29 of one subunit and Lys23' of the other. In the loop comprising residues 31 to 36, His33 accepts a hydrogen bond from the backbone amide group of Gln8 in the solution structure, but donates a hydrogen bond to the backbone carbonyl group of Glu29 in the X-ray structure. There is also a difference in the quaternary structure with regard to the relative orientation of the two subunits produced by a rigid body rotation about the C2 axis that alters the angle between the central beta-strands (formed by residues 23 to 29 of the 2 subunits) at the dimer interface, without breaking the symmetry. In the solution structure this angle has a value of 168 degrees, while in the X-ray structure the central strands are essentially flat, with an angle of 179 degrees. As a result, the separation between the two anti-parallel helices, which lie at an angle of about 60 degrees to the underlying beta-strands, is decreased from 14.8 A in the solution structure to 11.1 A in the X-ray structure. The quaternary structural difference is related to the different conformations of the N terminus and the 31 to 36 loop, both of which display different interactions with respect to the ends of the central beta-strands in the two structures. These findings indicate that interleukin-8 has the potential to undergo conformational transitions that may be of functional significance.  相似文献   
94.
The solution conformation of acyl carrier protein from Escherichia coli (77 residues) has been determined on the basis of 423 interproton-distance restraints and 32 hydrogen-bonding restraints derived from NMR measurements. A total of nine structures were computed using a hybrid approach combining metric matrix distance geometry and dynamic simulated annealing. The polypeptide fold is well defined with an average backbone atomic root-mean-square difference of 0.20 +/- 0.03 nm between the final nine converged structures and the mean structure obtained by averaging their coordinates. The principal structural motif is composed of three helices: 1 (residues 3-12), 2 (residues 37-47) and 4 (residues 65-75) which line a hydrophobic cavity. Helices 2 and 4 are approximately parallel to each other and anti-parallel at an angle of approximately equal to 150 degrees to helix 1. The smaller helix 3 (residues 56-63) is at an angle of approximately equal to 100 degrees to helix 4.  相似文献   
95.
The kinetics of the reaction of fully reduced membrane-bound cytochrome oxidase with O2 obtained in the Soret, alpha and near-i.r. regions were analysed, and the contributions of the three intermediates of the reaction [Clore & Chance (1978) Biochem. J. 173, 799--810] to seven wavelength pairs (430--463, 444--463, 590--630, 608--630, 740--940, 790--940 and 830--940 nm) were determined. The nature of the intermediates is discussed on the basis of the data in the present paper together with data in the literature from optical wavelength scanning, e.p.r., i.r. and magnetic-susceptibility studies.  相似文献   
96.
A time-dependent transferred nuclear Overhauser enhancement study of the conformation of the single-stranded DNA 11mer 5'd(A-A-G-T-G-T-G-A-T-A-T) bound to the single-stranded DNA binding protein of Escherichia coli (SSB) is presented. It is shown that the conformation of the bound 11mer is that of a right-handed B-type helix similar to that of the free 11mer. The observation of internucleotide transferred nuclear Overhauser enhancements for every base step excludes the possibility of intercalation by aromatic protein residues. In addition, it is shown that the effective correlation time of the bases (80 ns) corresponds to that of a complex of molecular weight approximately 170,000, containing two SSB tetramers. The sugars, on the other hand, exhibit a shorter effective correlation time (40 ns), indicating the presence of internal motion. This suggests that the bases are anchored to the protein surface, possibly by hydrophobic interactions, whereas the sugar-phosphate groups are directed outwards towards the solvent.  相似文献   
97.
The pathways whereby Sox2 scans DNA to locate its specific binding site are investigated by NMR in specific and nonspecific Sox2·DNA complexes and in a specific ternary complex with Oct1 on the Hoxb1 regulatory element. Direct transfer of Sox2 between nonspecific sites on different DNA molecules occurs without dissociation into free solution at a rate of ~10(6) M(-1) s(-1), whereas one-dimensional sliding proceeds with a diffusion constant of ≥0.1 μm(2)·s(-1). Translocation of Sox2 from one specific DNA site to another occurs via jumping, involving complete dissociation into free solution (k(d) ~5-6 s(-1)) followed by reassociation (k(a) ~5 × 10(8) M(-1) s(-1)). In the presence of Oct1 bound to an adjacent specific site, k(d) is reduced by more than 10-fold. Paramagnetic relaxation measurements, however, demonstrate that sparsely populated (<1%), transient states involving nonspecifically bound Sox2 in rapid exchange with specifically bound Sox2 are sampled in both binary Sox2·DNA- and ternary Oct1·Sox2·Hoxb1-DNA-specific complexes. Moreover, Sox2 modulates the mechanism of translocation of Oct1. Both Sox2 and the Oct1 POU(HD) domain are transiently released from the specific ternary complex by sliding to an adjacent nonspecific site, followed by direct transfer to another DNA molecule, whereas the Oct1 POU(S) domain is fixed to its specific site through direct interactions with Sox2. Intermolecular translocation of POU(HD) results in the formation of a bridged intermediate spanning two DNA molecules, enhancing the probability of complete intermolecular translocation of Oct1. By way of contrast, in the specific Oct1·DNA binary complex, POU(S) undergoes direct intermolecular translocation, whereas POU(HD) scans the DNA by sliding.  相似文献   
98.
Statistical potentials that embody torsion angle probability densities in databases of high‐quality X‐ray protein structures supplement the incomplete structural information of experimental nuclear magnetic resonance (NMR) datasets. By biasing the conformational search during the course of structure calculation toward highly populated regions in the database, the resulting protein structures display better validation criteria and accuracy. Here, a new statistical torsion angle potential is developed using adaptive kernel density estimation to extract probability densities from a large database of more than 106 quality‐filtered amino acid residues. Incorporated into the Xplor‐NIH software package, the new implementation clearly outperforms an older potential, widely used in NMR structure elucidation, in that it exhibits simultaneously smoother and sharper energy surfaces, and results in protein structures with improved conformation, nonbonded atomic interactions, and accuracy.  相似文献   
99.

Introduction  

The objectives of this study were to determine small arterial elasticity (SAE) in systemic lupus erythematosus (SLE) and to investigate its relationship with intima media thickness (IMT), accumulation of advanced glycation end products (AGEs), endothelial activation and inflammation.  相似文献   
100.
The molecular mechanisms by which plants sense their micronutrient status, and adapt to their environment in order to ensure a sufficient micronutrient supply, are poorly understood. Zinc is an essential micronutrient for all living organisms. when facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation were recently identified. in this mini-review, we highlight recent progress in understanding the adaptation to zinc deficiency in plants and discuss the future challenges to fully unravel its molecular basis.Key words: adaptation, zinc deficiency, biofortification, molecular regulators, plant nutritionIn an increasingly populated world, agricultural production is an essential element of social development. Agriculture is the primary source of all nutrients required for human life, and nutrient sufficiency is the basis for good health and welfare of the human population.1 Soils with zinc deficiency are widespread in the world, affecting large areas of cultivated soils in India, Turkey, China, Brazil and Australia,2,3 making zinc the most common crop micronutrient deficiency.4 In addition, risk of inadequate zinc diet and zinc malnutrition are estimated to affect one-third of the global human population, i.e., around two billion people.5 Most affected are people living in developing countries, where diets are rich in cereal-based foods. Cereal grains are rich in phytate, which is a potent anti-nutrient, limiting micronutrient bioavailability.6 Zinc deficiency in crop production can be easily ameliorated through zinc fertilization, making agronomic biofortification an important strategy,3 however in the poorer regions, the required infrastructure to provide a reliable supply of zinc fertilizers of sufficient quality, is often not available. In those situations, biofortified crops, in which the zinc status of crops is genetically improved by selective breeding or via biotechnology, offer a rural-based intervention that will more likely reach the population.7 Different traits can be targeted to developing such improved crops, such as plant zinc deficiency tolerance, zinc use efficiency and the accumulation of zinc in edible parts. However, insufficient knowledge on the molecular mechanisms and the regulation of the zinc homeostasis network in plants is a serious bottleneck when pursuing zinc biofortification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号