全文获取类型
收费全文 | 289篇 |
免费 | 46篇 |
专业分类
335篇 |
出版年
2021年 | 3篇 |
2020年 | 1篇 |
2018年 | 1篇 |
2016年 | 3篇 |
2015年 | 2篇 |
2014年 | 8篇 |
2013年 | 12篇 |
2012年 | 16篇 |
2011年 | 17篇 |
2010年 | 15篇 |
2009年 | 6篇 |
2008年 | 11篇 |
2007年 | 9篇 |
2006年 | 10篇 |
2005年 | 9篇 |
2004年 | 9篇 |
2003年 | 4篇 |
2002年 | 9篇 |
2001年 | 6篇 |
2000年 | 6篇 |
1999年 | 5篇 |
1998年 | 7篇 |
1997年 | 6篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 7篇 |
1992年 | 14篇 |
1991年 | 11篇 |
1990年 | 11篇 |
1989年 | 13篇 |
1988年 | 14篇 |
1987年 | 19篇 |
1986年 | 10篇 |
1985年 | 7篇 |
1984年 | 13篇 |
1983年 | 6篇 |
1982年 | 5篇 |
1981年 | 5篇 |
1980年 | 4篇 |
1979年 | 6篇 |
1978年 | 5篇 |
1977年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有335条查询结果,搜索用时 15 毫秒
61.
de Groot L Hinkema H Westra J Smit AJ Kallenberg CG Bijl M Posthumus MD 《Arthritis research & therapy》2011,13(6):R205
Introduction
Advanced glycation end products (AGEs) are produced and can accumulate during chronic inflammation, as might be present in patients with rheumatoid arthritis (RA). AGEs are involved in the development of cardiovascular disease. The aim of this study is to evaluate whether AGEs are increased in patients with long-standing RA and whether AGE accumulation is related to disease activity, disease severity and measures of (premature) atherosclerosis, such as endothelial activation, endothelial dysfunction and intima media thickness (IMT). 相似文献62.
Milica D olovi GM Jankovi RB olovi Vesna M Martinovi-emeriki 《Cancer immunology, immunotherapy : CII》1998,15(4):286-288
A case of primary nonsecretory plasmacytoma of the spleen is reported. On laparotomy and splenectomy a 920 g spleen was removed,
measuring 16×14×6 cm. The cut surface of the entire spleen showed that the tumour occupied most of the splenic tissue. A bone
marrow aspirate and trephine, skeletal survey showed no signs of myeloma. Biopsy of the liver and regional lymph nodes was
normal. Immunocytochemistry of the splenic tumour showed positivity for pan-B and plasma cell markers. After splenectomy the
patient was treated with chemotherapy according to protocol VBCMP (M2). 相似文献
63.
Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimeric coiled-coil of gp41 总被引:5,自引:0,他引:5
Bewley CA Louis JM Ghirlando R Clore GM 《The Journal of biological chemistry》2002,277(16):14238-14245
The pre-hairpin intermediate of gp41 from the human immunodeficiency virus (HIV) is the target for two classes of fusion inhibitors that bind to the C-terminal region or the trimeric coiled-coil of N-terminal helices, thereby preventing formation of the fusogenic trimer of hairpins. Using rational design, two 36-residue peptides, N36(Mut(e,g)) and N36(Mut(a,d)), were derived from the parent N36 peptide comprising the N-terminal helix of the gp41 ectodomain (residues 546-581 of HIV-1 envelope), characterized by analytical ultracentrifugation and CD, and assessed for their ability to inhibit HIV fusion using a quantitative vaccinia virus-based fusion assay. N36(Mut(e,g)) contains nine amino acid substitutions designed to disrupt interactions with the C-terminal region of gp41 while preserving contacts governing the formation of the trimeric coiled-coil. N36(Mut(a,d)) contains nine substitutions designed to block formation of the trimeric coiled-coil but retains residues that interact with the C-terminal region of gp41. N36(Mut(a,d)) is monomeric, is largely random coil, does not interact with the C34 peptide derived from the C-terminal region of gp41 (residues 628-661), and does not inhibit fusion. The trimeric coiled-coil structure is therefore a prerequisite for interaction with the C-terminal region of gp41. N36(Mut(e,g)) forms a monodisperse, helical trimer in solution, does not interact with C34, and yet inhibits fusion about 50-fold more effectively than the parent N36 peptide (IC(50) approximately 308 nm versus approximately 16 microm). These results indicate that N36(Mut(e,g)) acts by disrupting the homotrimeric coiled-coil of N-terminal helices in the pre-hairpin intermediate to form heterotrimers. Thus N36(Mut(e,g)) represents a novel third class of gp41-targeted HIV fusion inhibitor. A quantitative model describing the interaction of N36(Mut(e,g)) with the pre-hairpin intermediate is presented. 相似文献
64.
H JMP Verhagen D C de Leeuw M GM Roemer F Denkers W Pouwels A Rutten P H Celie G J Ossenkoppele G J Schuurhuis L Smit 《Cell death & disease》2014,5(6):e1300
Despite high remission rates after chemotherapy, only 30–40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis. This extremely poor prognosis of AML is mainly caused by treatment failure due to chemotherapy resistance. Chemotherapy resistance can be caused by various features including activation of alternative signaling pathways, evasion of cell death or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R). Here we have studied the role of the insulin-like growth factor-binding protein-7 (IGFBP7), a tumor suppressor and part of the IGF-1R axis, in AML. We report that IGFBP7 sensitizes AML cells to chemotherapy-induced cell death. Moreover, overexpression of IGFBP7 as well as addition of recombinant human IGFBP7 is able to reduce the survival of AML cells by the induction of a G2 cell cycle arrest and apoptosis. This effect is mainly independent from IGF-1R activation, activated Akt and activated Erk. Importantly, AML patients with high IGFBP7 expression have a better outcome than patients with low IGFBP7 expression, indicating a positive role for IGFBP7 in treatment and outcome of AML. Together, this suggests that the combination of IGFBP7 and chemotherapy might potentially overcome conventional AML drug resistance and thus might improve AML patient survival.Only 30–40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis.1 This extremely poor prognosis is mainly caused by treatment failure due to chemotherapy resistance. This resistance is often a multifactorial phenomenon that can include enhanced expression or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R).2, 3 The IGF-1R stimulates proliferation, protects cells from apoptosis and has been implicated in the development and maintenance of various cancers.4, 5 Several oncogenes require an intact IGF-1R pathway for their transforming activity6 and moreover, disruption or inhibition of IGF-1R activity has been shown to inhibit the growth and motility of a wide range of cancer cells in vitro and in mouse models.4, 5 IGF-1Rs are membrane receptors and binding of their ligand, the insulin-like growth factor-1 (IGF-1), results in receptor phosphorylation and activation of MAPK and PI3K/Akt signaling.4 Importantly, IGF-1, normally produced by the liver and bone marrow stromal cells, can stimulate the proliferation of cancer cells in vitro and genetic manipulations that reduce IGF-1 signaling can lead to decreased tumor growth.7, 8In hematological malignancies, a role for IGF-1 signaling has been demonstrated in multiple myeloma (MM) where it stimulates growth and potently mediates survival.9 Several anti-IGF-1R strategies have been shown to inhibit MM growth.10, 11 In AML, expression of the IGF-1R and IGF-1 was detected in AML cell lines and primary AML blasts and stimulation with IGF-1 can promote the growth of AML cells.12, 13, 14 In addition, neutralizing IGF-1R antibodies and the tyrosine kinase inhibitors (TKIs) NVP-AEW541 and NVP-ADW742, have been shown to inhibit proliferation and to induce apoptosis.15, 16In addition to its mitogenic and anti-apoptotic roles, directly influencing tumor development, IGF-1R appears to be a critical determinant of response to numerous anti-cancer therapies, including TKIs and chemotherapy.2, 3, 17, 18, 19, 20, 21, 22 In AML, activated IGF-1R signaling has been linked to cytarabine resistance, a drug included in every AML treatment schedule.17 Notably, in several cancer cell lines, a small subpopulation of drug-tolerant cancer cells exists that maintains their viability, after treatment with a lethal drug dose, via engagement of the IGF-1R.18The activity of the IGF-1R is tightly controlled at multiple levels, including their processing, endocytosis, trafficking and availability of its ligands.4 Ligand bioavailability is partly controlled by the family of secreted insulin-like growth factor-binding protein (IGFBP1 to IGFBP6), which can bind to IGFs therewith regulating the interaction of these ligands to their receptors. However, as IGFBPs are able to induce IGF-dependent and IGF-independent effects, the results of several studies on their role in cancer cell survival appeared to be controversial and complex.23, 24 In addition to IGFBPs, various IGFBP-related proteins have been identified.23, 25 One of these is the IGFB-related protein 1, also known as insulin-like growth factor-binding protein-7 (IGFBP7). IGFBP7 has 30% homology to IGFBP1 to IGFBP6 in its N-terminal domain and functions predominantly as a tumor suppressor.23, 24, 25, 26 In contrast to IGFBP1 to IGFBP6, which bind to the IGFs,23 IGFBP7 is a secreted protein that can directly bind to the IGF-1R and thereby inhibits its activity.27 The abundance of IGFBP7 is inversely correlated with tumor progression in hepatocellular carcinoma.28 Importantly, decreased expression of IGFBP7 has been associated with therapy resistance29, 30 and increasing IGFBP7 levels can inhibit melanoma and breast cancer growth.31, 32 IGFBP7 was originally identified as being involved in Raf-mediated apoptosis and senescence33 and also has been shown to induce senescence in mesenchymal stromal cells.34We established that IGFBP7 induces a cell cycle block and apoptosis in AML cells and cooperates with chemotherapy in the induction of leukemia cell death. AML patients with low IGFBP7 expression have a worse outcome than patients with high IGFBP7 expression, indicating that AML patients might benefit from a combination therapy consisting of chemotherapy and IGFBP7. Our results define IGFBP7 as a focus to enhance chemotherapy efficacy and improve AML patient survival. 相似文献
65.
The presence of bound water in the solution structure of the IgG binding domain of streptococcal protein G has been investigated by nuclear magnetic resonance using three-dimensional 1H rotating frame Overhauser 1H-15N multiple quantum coherence spectroscopy. The backbone amide protons of three residues, Ala20, Gln32 and Tyr33, are found to be in close proximity to bound water. Examination of the three-dimensional structure of the IgG binding domain indicates that in the vicinity of these three residues there are no backbone groups that do not already participate in hydrogen bonding and there are no suitably placed side-chain groups available for hydrogen bonding with water. As the lifetime of the bound water detected in this nuclear magnetic resonance experiment is greater than about one nanosecond, it is likely that the two bound water molecules participate in a bifurcating hydrogen bonding network comprising a CO-NH hydrogen bonded pair, such that the water molecule accepts a hydrogen bond from the NH proton and donates one to the carbonyl oxygen with the result that the amide proton is involved in a three center hydrogen bond. On the basis of the structure, one water molecule participates in such an interaction with the Ala20(NH)-Met1(CO) hydrogen bonded pair at the beginning of an anti-parallel beta-sheet, and the other with the Tyr33(NH)-Val29(CO) hydrogen bonded pair in the single alpha-helix. The latter, which is external and solvent accessible, is associated with a distortion in the alpha-helix centered around Tyr33 which consists of a significant increase in the CO(i-4)-N(i) and CO(i-4)-NH(i) distances relative to those in the rest of the helix, as well as a significant departure in the phi, psi angles of Tyr33 relative to regular helical geometry. Such solvent induced distortions in alpha-helices have been previously noticed in crystal structures and were postulated as possible folding intermediates for helical structures. The present observation of this phenomenon in solution indicates, however, that these water molecules are tightly bound and represent an integral part of the protein framework. 相似文献
66.
Background
The foodborne, gram-positive pathogen, Listeria monocytogenes, is capable of causing lethal infections in compromised individuals. In the post genomic era of L. monocytogenes research, techniques are required to identify and validate genes involved in the pathogenicity and environmental biology of the organism. The aim here was to develop a widely applicable method to tag L. monocytogenes strains, with a particular emphasis on the development of multiple strain competitive index assays. 相似文献67.
68.
Nucleotide sequence of the dihydrofolate reductase gene of methotrexate-resistant Lactobacillus casei 总被引:4,自引:0,他引:4
J Andrews G M Clore R W Davies A M Gronenborn B Gronenborn D Kalderon P C Papadopoulos S Sch?fer P F Sims R Stancombe 《Gene》1985,35(1-2):217-222
The nucleotide sequence of the dihydrofolate reductase (DHFR) gene of a methotrexate-resistant strain of Lactobacillus casei, which is the source of DHFR for nuclear magnetic resonance (NMR) studies, has been determined. The derived amino acid sequence differs from that obtained by protein sequencing by the presence of aspartic acid instead of asparagine at position 8 and proline instead of leucine at position 90. The nucleotide sequences of 320-bp 5' and 335-bp 3' flanking regions of this gene have also been determined. 相似文献
69.
A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. 总被引:13,自引:2,他引:11 下载免费PDF全文
70.
A 1H-NMR study of human interleukin-1 beta. Sequence-specific assignment of aromatic residues using site-directed mutant proteins 总被引:1,自引:0,他引:1
A M Gronenborn G M Clore U Schmeissner P Wingfield 《European journal of biochemistry》1986,161(1):37-43
Complete identification of spin systems in the aromatic region of recombinant human interleukin-1 beta has been achieved using two-dimensional homonuclear Hartmann-Hahn spectroscopy. In addition, sequence-specific assignments for the four tyrosine residues have been carried out with the help of a series of mutant proteins, obtained by site-directed mutagenesis of the cloned gene. It is shown that, for the mutant proteins investigated, either none or only local structural changes occur. The use of NMR spectroscopy to determine the structural identity of site-directed mutant proteins with respect to the wild-type protein is discussed. 相似文献