首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   4篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1989年   2篇
  1977年   3篇
  1973年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
21.
It has been proposed that the degree of recombination for a genomic region will affect the level of both nucleotide heterozygosity and the density of transposable elements. Both features of genomic diversity have been examined in a number of recent reports for regions undergoing relatively normal levels of recombination in Drosophila melanogaster. In this study the genomic variation associated with yellow-achaete- scute loci located at the tip of the X chromosome is examined by six- cutter restriction mapping. In this region, as usual for regions adjacent to telomeres, crossing-over is dramatically reduced, and published studies of visible mutants indicate extremely little restriction-map variation. Eight six-cutter restriction endonucleases were used to locate sequence variation in 14- and 16.5-kb regions in 109 lines sampled from North America, Africa, and Europe. The overall level of heterozygosity is estimated as 0.29%. Nine large insertions, all presumed to be transposable elements, were observed. Base-pair heterozygosity appears to be reduced compared with regions having normal levels of recombination. The estimated heterozygosity is much higher than reported in earlier studies of restriction-map variation among visible mutations in the complex. The incidence of large insertions is not elevated compared with that in other regions of the genome. This suggests that asymmetric synapsis and exchange is not an important mechanism for the elimination of transposable elements.   相似文献   
22.
BACKGROUND: Previous systems for dot (signal) counting in fluorescence in situ hybridization (FISH) images have relied on an auto-focusing method for obtaining a clearly defined image. Because signals are distributed in three dimensions within the nucleus and artifacts such as debris and background fluorescence can attract the focusing method, valid signals can be left unfocused or unseen. This leads to dot counting errors, which increase with the number of probes. METHODS: The approach described here dispenses with auto-focusing, and instead relies on a neural network (NN) classifier that discriminates between in and out-of-focus images taken at different focal planes of the same field of view. Discrimination is performed by the NN, which classifies signals of each image as valid data or artifacts (due to out of focusing). The image that contains no artifacts is the in-focus image selected for dot count proportion estimation. RESULTS: Using an NN classifier and a set of features to represent signals improves upon previous discrimination schemes that are based on nonadaptable decision boundaries and single-feature signal representation. Moreover, the classifier is not limited by the number of probes. Three classification strategies, two of them hierarchical, have been examined and found to achieve each between 83% and 87% accuracy on unseen data. Screening, while performing dot counting, of in and out-of-focus images based on signal classification suggests an accurate and efficient alternative to that obtained using an auto-focusing mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号