首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1352篇
  免费   123篇
  2022年   12篇
  2021年   26篇
  2020年   19篇
  2019年   17篇
  2018年   24篇
  2017年   12篇
  2016年   27篇
  2015年   41篇
  2014年   50篇
  2013年   79篇
  2012年   93篇
  2011年   90篇
  2010年   59篇
  2009年   55篇
  2008年   70篇
  2007年   60篇
  2006年   60篇
  2005年   49篇
  2004年   53篇
  2003年   43篇
  2002年   57篇
  2001年   30篇
  2000年   34篇
  1999年   30篇
  1998年   13篇
  1997年   11篇
  1996年   12篇
  1995年   12篇
  1994年   11篇
  1993年   9篇
  1992年   16篇
  1991年   18篇
  1990年   14篇
  1989年   15篇
  1988年   16篇
  1987年   14篇
  1986年   10篇
  1985年   10篇
  1984年   13篇
  1983年   10篇
  1982年   8篇
  1980年   8篇
  1979年   10篇
  1978年   11篇
  1977年   12篇
  1976年   9篇
  1975年   11篇
  1974年   18篇
  1973年   20篇
  1967年   8篇
排序方式: 共有1475条查询结果,搜索用时 62 毫秒
151.
Cytoplasmic microtubules are important in many cellular homeostatic processes in the cell. They regulate cell shape and movement as well as serving as a network by which vesicles and membrane-bound organelles can travel. Lately, there have been many studies demonstrating that microtubules are involved in regulation of intracellular signaling and, therefore, affect vascular reactivity. In this study, we tested the hypothesis that microtubule disruption attenuates agonist-induced endothelium-dependent vasodilation. Isolated mesenteric arterial bed from normotensive rats was preconstricted with phenylephrine, and dose-response curves for histamine, acetylcholine (ACh), sodium nitroprusside (SNP), and pinacidil were performed before and after incubation with nocodazole or colchicine. Treatment of the vascular beds with nocodazole or colchicine significantly attenuated histamine relaxation but did not change the ACh-, SNP-, or pinacidil-induced vasorelaxation. Nocodazole did not cause an additional attenuation of the histamine-mediated dilation in mesenteric vessels in the presence of N-nitro-L-arginine methyl ester, high extracellular K+, or K+ channel blockers. These data suggest that disruption of microtubules affects an essential endothelial component of histamine-mediated vasodilation in the mesenteric arterial bed. The mechanism(s) involved in this effect might be related to an impairment of endothelial NO synthesis, which might not be as important for the ACh as for the histamine vasodilator response in rat mesenteric vessels. These results demonstrate the importance of the microtubular system for endothelium-dependent NO-mediated smooth muscle relaxation. nocodazole; nitric oxide; mesenteric arterial bed  相似文献   
152.
Cysticercosis is caused by Taenia spp. metacestodes, which must survive in the host tissues to complete their life cycle. Their survival depends on their control of host immune responses. Because many parasites use proteases to modulate host responses, we examined culture media from Taenia crassiceps metacestodes for protease activity using peptide substrates. We identified prominent aminopeptidase activity at neutral pH, which was inhibited by chelating agents and partially inhibited by the aminopeptidase inhibitor, bestatin. Endopeptidase substrates were optimally cleaved at slightly acidic pH and endopeptidase activity was inhibited by cysteine protease inhibitors. Gel filtration FPLC and subsequent visualization by silver staining revealed a metallo-aminopeptidase of molecular weight 21 kDa and cysteine proteases of Mr 70 and 64 kDA. Recombinant IL-2 was digested when incubated with parasite culture supernatants, but not with control media. IL-2 degradation was completely inhibited by 1,10 phenanthroline and partially inhibited by bestatin, suggesting that a metallo-aminopeptidase was responsible. Incubation of human IgG with culture supernatants resulted in complete degradation of IgG, which was blocked by cysteine protease inhibitors. These observations demonstrate that Taenia spp. metacestodes secrete a number of proteolytic enzymes, which may target molecules from the host immune system and assist in evasion of the host immune response.  相似文献   
153.
154.
Identifying the molecular mechanisms that regulate bone's adaptive response to alterations in load bearing may potentiate the discovery of interventions to curb osteoporosis. Adult female mice (BALB/cByJ) were subjected to catabolic (disuse) and anabolic (45 Hz, 0.3g vibration for 10 min/day) signals, and changes in the mRNA levels of thirteen genes were compared to altered indices of bone formation. Age-matched mice served as controls. Following 4 days of disuse, significant (P = 0.05) decreases in mRNA levels were measured for several genes, including collagen type I (-55%), osteonectin (-44%), osterix (-36%), and MMP-2 (-36%) all of which, after 21 days, had normalized to control levels. In contrast, expression of several genes in the vibrated group, which failed to show significant changes at 4 days, demonstrated significant increases after 21 days, including inducible nitric oxide synthase (iNOS) (39%, P = 0.07), MMP-2 (54%), and receptor activator of the nuclear factor kB ligand (RANKL) (32%). Correlations of gene expression patterns across experimental conditions and time points allowed the functional clustering of responsive genes into two distinct groups. Each cluster's specific regulatory role (formation vs. resorption) was reinforced by the 60% suppression of formation rates caused by disuse, and the 55% increase in formation rates stimulated by mechanical signals (P < 0.05). These data confirm the complexity of the bone remodeling process, both in terms of the number of genes involved, their interaction and coordination of resorptive and formative activity, and the temporal sensitivity of the processes. More detailed spatial and temporal correlations between altered mRNA levels and tissue plasticity may further delineate the molecules responsible for the control of bone mass and morphology.  相似文献   
155.
The first fungal glycosylphosphatidylinositol anchored beta(1-3)glucanosyltranferase (Gel1p) has been described in Aspergillus fumigatus and its encoding gene GEL1 identified. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. We characterize here GEL2, a homologue of GEL1. Both homologues share common characteristics: (i) GEL1 and GEL2 are constitutively expressed during over a range of growth conditions; (ii) Gel2p is also a putative GPI-anchored protein and shares the same beta(1-3)glucanosyltransferase activity as Gel1p and (iii) GEL2, like GEL1, is able to complement the Deltagas1 deletion in Saccharomyces cerevisiae confirming that Gelp and Gasp have the same enzymatic activity. However, disruption of GEL1 did not result in a phenotype whereas a Deltagel2 mutant and the double mutant Deltagel1Deltagel2 exhibit slower growth, abnormal conidiogenesis, and an altered cell wall composition. In addition, the Deltagel2 and the Deltagel1Deltagel2 mutant have reduced virulence in a murine model of invasive aspergillosis. These data suggest for the first time that beta(1-3)glucanosyltransferase activity is required for both morphogenesis and virulence in A. fumigatus.  相似文献   
156.
Inhibition of canopy tree recruitment beneath thickets of the evergreen shrubs Rhododendron maximum L. and Kalmia latifolia L. has long been observed in Southern Appalachian forests, yet the mechanisms of this process remain unresolved. We present a first-year account of suppression of oak seedlings in relation to Rhododendron and Kalmia basal area, light and resource availability, seedling performance and the rates of seedling damage (i.e., herbivory). We found no evidence of first-year seedling suppression or significant resource deficiencies beneath thickets of K. latifolia in mature mixed hardwood stands. Suppression beneath R. maximum was apparent during the first growing season. We found that seedling biomass, light availability prior to canopy closure, and seedling tissue C:N ratios were negatively correlated with R. maximum basal area. Basal area of R. maximum was positively correlated with seedling mortality rates, soil [Al], and early-growing season leaf herbivory rates. Seedling growth was positively correlated with light and tissue C:N, while negatively correlated with soil [Al]. Overall, our results support the inhibition model of shade-mediated carbon limitation beneath dense understory shrubs and indicate the potential importance of herbivory and aluminum toxicity as components of a suppression mechanism beneath R. maximum thickets. We present a causal model of first year inhibition beneath R. maximum in the context of our findings and the results of prior studies.  相似文献   
157.
Galactomannan is a characteristic polysaccharide of the human filamentous fungal pathogen Aspergillus fumigatus that can be used to diagnose invasive aspergillosis. In this study, we report the isolation of a galactomannan fraction associated to membrane preparations from A. fumigatus mycelium by a lipid anchor. Specific chemical and enzymatic degradations and mass spectrometry analysis showed that the lipid anchor is a glycosylphosphatidylinositol (GPI). The lipid part is an inositol phosphoceramide containing mainly C18-phytosphingosine and monohydroxylated lignoceric acid (2OH-C(24:0) fatty acid). GPI glycan is a tetramannose structure linked to a glucosamine residue: Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4GlcN. The galactomannan polymer is linked to the GPI structure through the mannan chain. The GPI structure is a type 1, closely related to the one previously described for the GPI-anchored proteins of A. fumigatus. This is the first time that a fungal polysaccharide is shown to be GPI-anchored.  相似文献   
158.
Using both ZnAF-2F (a Zn2+ specific fluorophore) and 65Zn2+, we determined the rate of transporter mediated Zn2+ influx (presumably mediated by the SLC39A1 gene product, protein name hZIP1) under steady state conditions and studied the effects of extracellular acidification. When K562 erythroleukemia cells were placed in Zn2+ containing buffers (1-60 microM), the initial rate of 65Zn2+ accumulation mirrored the apparent rise in free intracellular Zn2+ concentrations sensed by ZnAF-2F. Therefore, newly transported Zn2+ equilibrated with the free intracellular Zn2+ pool sensed by ZnAF-2F. A new steady state with elevated free intracellular Zn2+ was established after about 30 min. An estimate of 11 microM for the Km and 0.203 nmol/mg/s for the Vmax were obtained for Zn2+ influx. 65Zn2+ uptake and ZnAF-2F fluorescent changes were inhibited by extracellular acidification (range tested: pH 8-6, IC50 = pH 6.34). The IC50 for proton effects was close to the pKa for histidine, suggesting conserved histidine residues present in SLC39A1 play a critical role in Zn2+ influx and are involved in the pH effect.  相似文献   
159.
Alzheimer's disease is characterized by the accumulation of amyloid-beta peptide, which is cleaved from the amyloid-beta precursor protein (APP). Reduction in levels of the potentially toxic amyloid-beta has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the regulation of the APP gene. Recent in vivo and in vitro studies have illustrated the importance of copper in Alzheimer's disease neuropathogenesis and suggested a role for APP and amyloid-beta in copper homeostasis. We hypothesized that metals and in particular copper might alter APP gene expression. To test the hypothesis, we utilized human fibroblasts overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. MNK deletion fibroblasts have high intracellular copper, whereas MNK overexpressing fibroblasts have severely depleted intracellular copper. We demonstrate that copper depletion significantly reduced APP protein levels and down-regulated APP gene expression. Furthermore, APP promoter deletion constructs identified the copper-regulatory region between -490 and +104 of the APP gene promoter in both basal MNK overexpressing cells and in copper-chelated MNK deletion cells. Overall these data support the hypothesis that copper can regulate APP expression and further support a role for APP to function in copper homeostasis. Copper-regulated APP expression may also provide a potential therapeutic target in Alzheimer's disease.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号