首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   9篇
  2022年   2篇
  2021年   2篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   11篇
  2011年   7篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1981年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
81.
Different types of enzymes from yeast and from rabbit muscle which catalyze phosphoryl transfer reactions involved in glucose metabolism differ in their sensitivity to vanadate. Phospho glucomutase and phosphoglycerate mutase are inhibited at the μM range. 2,3-Bisphosphoglycerate phosphatase is completely inhibited by 0.5 mM vanadate. 2,3-Bisphosphoglycerate synthase, hexokinase, phosphoglycerate kinase and fructose-1,6-P2 phosphatase are partially inhibited by mM vanadate. Phosphofructokinase and pyruvate kinase are not affected. The glycolytic enzymes which mechanism does not involves phosphoryl transfer step are not affected by vanadate.  相似文献   
82.
83.
84.
85.
This report documents the development of the autopodium of the common chameleon (Chamaeleo chamaeleo) using light microscopy, scanning electron microscopy, and transmission electron microscopy. Three main periods were distinguished during the morphogenesis of this structure. In the first period (stages 33-35 of chameleon development) the autopodium is paddle-shaped with a prominent apical ectodermal ridge (AER) along the distal margin. During this period the AER has structural features similar to other reptilian and avian vertebrates except for the scarcity or absence of gap junctions. The second period of autopodium morphogenesis (stage 36 of chameleon development) is characterized by the formation of a central cleft which divides this structure into two digital segments. In the forelimb the autopodial cleft occupies the space between digits 3 and 4. In the hindlimb the cleft occupies the space between digits 2 and 3. Mesenchymal cell death constitutes a constant feature during cleft formation. In addition to cell death during this process, we have observed that the AER flattens out in the zone of cleft formation while in the digital portions of the autopodium it takes on a polystratified appearance. In the last period of autopodial morphogenesis (stage 37 of chameleon development) digits become free by means of interdigital mesenchymal cell death.  相似文献   
86.
Inhibition of phosphoglucomutase by fructose 2,6-bisphosphate   总被引:1,自引:0,他引:1  
Fructose 2,6-bisphosphate inhibits phosphoglucomutase. The inhibition is mixed with respect to glucose 1,6-bisphosphate and non-competitive with respect to glucose 1-phosphate. In contrast with fructose 1,6-bisphosphate and glycerate 1,3-bisphosphate, which also possess inhibitory effect, fructose 2,6-bisphosphate does not phosphorylate phosphoglucomutase. Fructose 2,6-bisphosphate preparations contain contaminants which can explain artefactual results previously reported.  相似文献   
87.
Cell Biology and Toxicology - Autophagy is a mechanism responsible for the degradation of cellular components to maintain their homeostasis. However, autophagy is commonly altered and compromised...  相似文献   
88.
89.

Objective

Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes.

Methods and Results

Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations in arteries from LZR but not OZR. The NO donor SNAP induced decreases in intracellular calcium that were impaired in arteries from OZR compared to controls.

Conclusions

The present study demonstrates nitrergic dysfunction and impaired neural NO signalling due to oxidative stress and nNOS uncoupling in penile arteries under conditions of insulin resistance. This dysfunction likely contributes to the metabolic syndrome-associated ED, along with the endothelial dysfunction also involving altered NO signalling.  相似文献   
90.
The heart ventricles of farmed gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and Senegalese sole (Solea senegalensis) have been examined and we compared them to the corresponding fish from wild populations. These results can help to understand the differences in farmed fish hearts and in the myocardial structure that this condition of growth can produce. Several parameters were measured in the two groups. Numerical comparisons included heart mass, cardiac and ventricular index, ventricle height:width ratio, width and alignment of bulbus arteriosus, ventricular angles and compacta thickness. We confirm that the normal shape of wild fish hearts can be modified as a result from the adaptation to different environments. These changes can modify the structure of myocardium and compromise the cardiac function in farmed species. The ventricle of farmed fish present differences in shape, were misaligned, rounder, with a wider bulbus and thinner compact layer. Further studies are necessary to reveal functional significance and possible causes of these abnormal hearts and improve the cardiac welfare of Mediterranean species in culture as a way of ensuring a level of production compatible with economic benefits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号