首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4162篇
  免费   338篇
  2023年   35篇
  2022年   84篇
  2021年   177篇
  2020年   92篇
  2019年   112篇
  2018年   129篇
  2017年   115篇
  2016年   155篇
  2015年   261篇
  2014年   281篇
  2013年   308篇
  2012年   479篇
  2011年   390篇
  2010年   221篇
  2009年   198篇
  2008年   265篇
  2007年   253篇
  2006年   189篇
  2005年   174篇
  2004年   130篇
  2003年   122篇
  2002年   93篇
  2001年   32篇
  2000年   24篇
  1999年   26篇
  1998年   17篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   8篇
  1992年   16篇
  1991年   6篇
  1990年   6篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1983年   6篇
  1981年   2篇
  1979年   5篇
  1977年   4篇
  1976年   4篇
  1971年   4篇
  1969年   3篇
  1968年   3篇
  1967年   4篇
  1963年   2篇
  1959年   2篇
  1955年   2篇
  1933年   2篇
排序方式: 共有4500条查询结果,搜索用时 31 毫秒
91.
Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency.  相似文献   
92.
CLC anion transporters form dimers that function either as Cl channels or as electrogenic Cl/H+ exchangers. CLC channels display two different types of “gates,” “protopore” gates that open and close the two pores of a CLC dimer independently of each other and common gates that act on both pores simultaneously. ClC-7/Ostm1 is a lysosomal 2Cl/1H+ exchanger that is slowly activated by depolarization. This gating process is drastically accelerated by many CLCN7 mutations underlying human osteopetrosis. Making use of some of these mutants, we now investigate whether slow voltage activation of plasma membrane-targeted ClC-7/Ostm1 involves protopore or common gates. Voltage activation of wild-type ClC-7 subunits was accelerated by co-expressing an excess of ClC-7 subunits carrying an accelerating mutation together with a point mutation rendering these subunits transport-deficient. Conversely, voltage activation of a fast ClC-7 mutant could be slowed by co-expressing an excess of a transport-deficient mutant. These effects did not depend on whether the accelerating mutation localized to the transmembrane part or to cytoplasmic cystathionine-β-synthase (CBS) domains of ClC-7. Combining accelerating mutations in the same subunit did not speed up gating further. No currents were observed when ClC-7 was truncated after the last intramembrane helix. Currents and slow gating were restored when the C terminus was co-expressed by itself or fused to the C terminus of the β-subunit Ostm1. We conclude that common gating underlies the slow voltage activation of ClC-7. It depends on the CBS domain-containing C terminus that does not require covalent binding to the membrane domain of ClC-7.  相似文献   
93.
Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.  相似文献   
94.
95.
96.
The Na+-coupled glucose transporter SGLT1 (SLC5A1) accomplishes concentrative cellular glucose uptake even at low extracellular glucose concentrations. The carrier is expressed in renal proximal tubules, small intestine and a variety of nonpolarized cells including several tumor cells. The present study explored whether SGLT1 activity is regulated by caveolin-1, which is known to regulate the insertion of several ion channels and carriers in the cell membrane. To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of caveolin-1 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes, but not in oocytes injected with water or caveolin-1 alone, the addition of glucose to the extracellular bath generated an inward current (Ig), which was increased following coexpression of caveolin-1. Kinetic analysis revealed that caveolin-1 increased maximal Ig without significantly modifying the glucose concentration required to trigger half maximal Ig (KM). According to chemiluminescence and confocal microscopy, caveolin-1 increased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of Ig, which was similar in the absence and presence of caveolin-1. In conclusion, caveolin-1 up-regulates SGLT1 activity by increasing carrier protein abundance in the cell membrane, an effect presumably due to stimulation of carrier protein insertion into the cell membrane.  相似文献   
97.
Several β-carbonic anhydrases (CAs, EC 4.2.1.1) are present in all land plants examined thus far. Here we report the first detailed biochemical characterization of one such isoform, FbiCA 1, from the C4 plant Flaveria bidentis, which was cloned, purified and characterized as recombinant protein. FbiCA 1 has an interesting CO2 hydrase catalytic activity (kcat of 1.2 × 105 and kcat/Km of 7.5 × 106 M?1 × s?1) and was moderately inhibited by most simple/complex inorganic anions. Potent FbiCA 1 inhibitors were also detected, such as trithiocarbonate, diethyldithiocarbamate, sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid (KIs in the range of 4–60 μM). Such inhibitors may be used as tools to better understand the role of various β-CA isoforms in photosynthesis.  相似文献   
98.
The α-carbonic anhydrase (CA, EC 4.2.1.1) from the extremophilic bacterium Sulfurihydrogenibium azorense (SazCA) was recently shown to be the fastest CA known. Here we investigated this enzyme for its activation with a series of amino acids and amines. The best SazCA activators were d-Phe, l-DOPA, l- and d-Trp, dopamine and serotonin, which showed activation constants in the range of 3–23 nM. l- and d-His, l-Phe, l-Tyr, 2-pyridyl-methylamine and L-adrenaline were also effective activators (KAs in the range of 62–90 nM), whereas d-Dopa, d-Tyr and several heterocyclic amines showed activity in the micromolar range. The good thermal stability, robustness, very high catalytic activity and propensity to be activated by simple amino acids and amines, make SazCA a very interesting candidate for biomimetic CO2 capture processes.  相似文献   
99.
Using PD325901 as a starting point for identifying novel allosteric MEK inhibitors with high cell potency and long-lasting target inhibition in vivo, truncation of its hydroxamic ester headgroup was combined with incorporation of alkyl and aryl ethers at the neighboring ring position. Whereas alkoxy side chains did not yield sufficient levels of cell potency, specifically substituted aryloxy groups allowed for high enzymatic and cellular potencies. Sulfamide 28 was identified as a highly potent MEK inhibitor with nanomolar cell potency against B-RAF (V600E) as well as Ras-mutated cell lines, high metabolic stability and resulting long half-lives. It was efficacious against B-RAF as well as K-Ras driven xenograft models and showed—despite being orally bioavailable and not a P-glycoprotein substrate—much lower brain/plasma exposure ratios than PD325901.  相似文献   
100.
A series of benzenesulfonamides incorporating cyanoacrylamide moieties (tyrphostine analogs) were assayed as inhibitors of the β-carbonic anhydrase (CA, EC 4.2.1.1) from Saccharomyces cerevisiae, ScCA. Some of these compounds were low nanomolar or subnanomolar ScCA inhibitors and showed selectivity ratios in the range of 4.91–69.86 for inhibiting the yeast enzyme over the offtarget human (h) isoforms hCA I and of 6.46–13.52 for inhibiting ScCA over hCA II. The model organism S. cerevisiae and this particular enzyme may be useful for detecting antifungals with a novel mechanism of action compared to the classical azole drugs to which significant drug resistance emerged. Indeed, some of these sulfonamides inhibited the growth of the yeast with CC50-s in the range of 0.73–6.54 μM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号