首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1123篇
  免费   57篇
  国内免费   1篇
  1181篇
  2022年   11篇
  2021年   23篇
  2020年   19篇
  2019年   12篇
  2018年   18篇
  2017年   18篇
  2016年   36篇
  2015年   58篇
  2014年   46篇
  2013年   42篇
  2012年   78篇
  2011年   64篇
  2010年   52篇
  2009年   29篇
  2008年   48篇
  2007年   43篇
  2006年   40篇
  2005年   47篇
  2004年   24篇
  2003年   28篇
  2002年   23篇
  2001年   21篇
  2000年   21篇
  1999年   16篇
  1998年   10篇
  1997年   9篇
  1996年   10篇
  1995年   12篇
  1994年   9篇
  1993年   6篇
  1992年   12篇
  1991年   14篇
  1990年   9篇
  1989年   8篇
  1988年   12篇
  1987年   14篇
  1986年   14篇
  1985年   18篇
  1984年   16篇
  1983年   12篇
  1982年   12篇
  1981年   9篇
  1980年   12篇
  1979年   10篇
  1978年   10篇
  1977年   7篇
  1975年   8篇
  1971年   9篇
  1969年   6篇
  1968年   8篇
排序方式: 共有1181条查询结果,搜索用时 15 毫秒
21.
Nanoparticle cytotoxicity testing based on in vitro methods frequently lack consistency. Even the inclusion of the commonly employed growth supplement, FCS (fetal calf serum), generates variable results. Thus, our object was to investigate the effect of FCS concentration on the cytotoxic behaviour of the unmodified nanoclay, Cloisite® Na+. Human monocytic U937 cells in medium supplemented with 5% FCS, 2.5% FCS or serum‐free medium were treated with 1 mg/ml Cloisite Na+. Cell growth in 2.5% FCS was significantly inhibited by Cloisite Na+ within 48 h, whereas little effect was seen with a supplement of 5% FCS. Without serum, cell growth was inhibited and Cloisite Na+ had a detrimental effect on these cells. In media supplemented with FCS, the nanoclays agglomerated together to form large bundles, whereas they were evenly dispersed throughout the medium in the absence of serum. Clay particles, therefore, have cytotoxic properties that may be linked to their dispersion pattern. These adverse effects seem to be masked by 5% FCS. Serum supplementation is an important consideration in the toxicological assessments of nanomaterials on cells, which needs to be addressed in the standardization of in vitro testing methods.  相似文献   
22.
23.
24.
Many environmental applications exist for biosensors capable of providing real-time analyses. One pressing current need is monitoring for agents of chemical- and bio-terrorism. These applications require systems that can rapidly detect small organics including nerve agents, toxic proteins, viruses, spores and whole microbes. A second area of application is monitoring for environmental pollutants. Processing of grab samples through chemical laboratories requires significant time delays in the analyses, preventing the rapid mapping and cleanup of chemical spills. The current state of development of miniaturized, integrated surface plasmon resonance (SPR) sensor elements has allowed for the development of inexpensive, portable biosensor systems capable of the simultaneous analysis of multiple analytes. Most of the detection protocols make use of antibodies immobilized on the sensor surface. The Spreeta 2000 SPR biosensor elements manufactured by Texas Instruments provide three channels for each sensor element in the system. A temperature-controlled two-element system that monitors for six analytes is currently in use, and development of an eight element sensor system capable of monitoring up to 24 different analytes will be completed in the near future. Protein toxins can be directly detected and quantified in the low picomolar range. Elimination of false positives and increased sensitivity is provided by secondary antibodies with specificity for different target epitopes, and by sensor element redundancy. Inclusion of more than a single amplification step can push the sensitivity of toxic protein detection to femtomolar levels. The same types of direct detection and amplification protocols are used to monitor for viruses and whole bacteria or spores. Special protocols are required for the detection of small molecules. Either a competition type assay where the presence of analyte inhibits the binding of antibodies to surface-immobilized analyte, or a displacement assay, where antibodies bound to analyte on the sensor surface are displaced by free analyte, can be used. The small molecule detection assays vary in sensitivity from the low micromolar range to the high picomolar.  相似文献   
25.
We hypothesized that interference of opiate antagonist-precipitated withdrawal signs under anesthesia is anesthetic-specific. Three groups of morphine-dependent rats were compared in different experimental conditions using a protocol of rapid withdrawal induction by an antagonist under anesthesia. We observed that ketamine and midazolam have different effects on the expression of withdrawal. This brings specific insights into the pharmacological basis of therapy with induction of opiate antagonist.  相似文献   
26.
Summary We have cloned lamB, the gene for receptor (an outer membrane protein), on a small plasmid which also carries the gene for -lactamase (a periplasmic protein). We have identified a promoter in the region of malK, the gene immediately preceding lamB, which is active in minicells but relatively inactive in vitro. Using a minicell system, we have found that both receptor and -lactamase are made as full length precursors which are subsequently processed. We also show that the receptor precursor can be exported to the outer membrane before it is processed. Mature -lactamase is found only in the periplasm, suggesting that processing may be a requirement for export to the periplasm.  相似文献   
27.
Abstract: P19 is a C3H mouse-derived line of multipotent embryonic carcinoma cells that differentiate into neural cells. P19 cell clones overexpressing the three major forms of β-amyloid precursor protein from their cDNA constructs were established. Unlike a previous study in which P19-derived neurons had a limited α-secretase activity, all of these clones produced significant amounts of secreted β-amyloid precursor protein. When treated with retinoic acid, these transformed lines differentiated into neurons and survived better than did nontransformed parental P19 cells. Furthermore, P19-derived neurons survived better in medium conditioned by the transformed P19 line, and survival was reduced by immunoabsorption with an antibody to β-amyloid precursor protein. These results suggest neurotrophic effects of secreted β-amyloid precursor protein and contrast with a previous report in which overexpression of a full-length cDNA for β-amyloid precursor protein led to degeneration of P19-derived neurons. Western blot analysis suggested that this difference might result from different levels of expression of putative neurotoxic C-terminal fragments of β-amyloid precursor protein; moreover, P19-derived neurons differ from P19 stem cells in the processing of these C-terminal fragments.  相似文献   
28.

Background

Next-generation sequencing is making it critical to robustly and rapidly handle genomic ranges within standard pipelines. Standard use-cases include annotating sequence ranges with gene or other genomic annotation, merging multiple experiments together and subsequently quantifying and visualizing the overlap. The most widely-used tools for these tasks work at the command-line (e.g. BEDTools) and the small number of available R packages are either slow or have distinct semantics and features from command-line interfaces.

Results

To provide a robust R-based interface to standard command-line tools for genomic coordinate manipulation, we created bedr. This open-source R package can use either BEDTools or BEDOPS as a back-end and performs data-manipulation extremely quickly, creating R data structures that can be readily interfaced with existing computational pipelines. It includes data-visualization capabilities and a number of data-access functions that interface with standard databases like UCSC and COSMIC.

Conclusions

bedr package provides an open source solution to enable genomic interval data manipulation and restructuring in R programming language which is commonly used in bioinformatics, and therefore would be useful to bioinformaticians and genomic researchers.
  相似文献   
29.
Over the last decade, it has become increasingly clear that adipose tissue, and particularly adipocytes, contributes to tumor progression. Obesity, an ever‐increasing worldwide phenomenon, exacerbates this effect. The influence of obesity on melanoma remains poorly studied, although recent data do underline an association between the two diseases in both humans and murine models. Herein, we review the impact of obesity on melanoma incidence and progression and discuss the underlying mechanisms known to be involved. Adipose tissue favors the proliferation and aggressiveness of melanoma cells through a direct dialog, mediated by soluble factors and by exosomes, and through remodeling of the tumor microenvironment. This knowledge could, in the future, help to design new personalized therapeutic options for obese melanoma patients.  相似文献   
30.
The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown limited comparative efficacy as a stand-alone platform in primates, due possibly to suboptimal gene expression or cell targeting. Here, regimens using DNA plasmids modified for optimal antigen expression and recombinant adenovirus (rAd) vectors, all encoding the glycoprotein (GP) gene from Angola Marburg virus (MARV), were compared for their ability to provide immune protection against lethal MARV Angola infection. Heterologous DNA-GP/rAd5-GP prime-boost and single-modality rAd5-GP, as well as the DNA-GP-only vaccine, prevented death in all vaccinated subjects after challenge with a lethal dose of MARV Angola. The DNA/DNA vaccine induced humoral responses comparable to those induced by a single inoculation with rAd5-GP, as well as CD4+ and CD8+ cellular immune responses, with skewing toward CD4+ T-cell activity against MARV GP. Vaccine regimens containing rAd-GP, alone or as a boost, exhibited cellular responses with CD8+ T-cell dominance. Across vaccine groups, CD8+ T-cell subset dominance comprising cells exhibiting a tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) double-positive functional phenotype was associated with an absence or low frequency of clinical symptoms, suggesting that both the magnitude and functional phenotype of CD8+ T cells may determine vaccine efficacy against infection by MARV Angola.The filoviruses Marburgvirus (MARV) and Ebolavirus (EBOV) are endemic primarily to central Africa and cause a severe form of viral hemorrhagic fever. Of all the filovirus strains or species, the Angola strain of MARV is associated with the highest mortality rate (90%) in humans observed to date (26). An increase in natural filovirus outbreak frequency over the past decade and the potential for use to cause deliberate human mortality have focused attention on the need for therapeutics and vaccines against filoviruses. While regulatory pathways have been proposed to facilitate licensing of a preventive vaccine against potently lethal pathogens such as these, there is as yet no licensed vaccine for use in humans, and efforts remain targeted to the optimization of vaccine performance in nonhuman primates (NHP) since this animal model recapitulates many aspects of disease pathogenesis observed in humans.Genetic vaccines are a promising approach for immunization against pathogens that are rapidly changing due to natural evolution, cross-species transmission, or intentional modification. Gene-based vaccines are produced rapidly and can be delivered by a variety of vectors. DNA vectors are advantageous because they are inherently safe and stable and can be used repeatedly without inducing antivector immune responses. However, while filovirus DNA vaccines have demonstrated efficacy in small animal models, efforts to induce protective immunity by injection of plasmid DNA alone into NHP have yielded less encouraging results. EBOV DNA vectors generate immune protection in mice and guinea pigs, but this has not been demonstrated in NHP unless DNA immunization is boosted with a viral vector vaccine (23). MARV DNA fully protects mice and guinea pigs but provides only partial protection in NHP (17). The discordant results between rodent and primate species may be due to the use of slightly modified infectious challenge viruses in rodent models or may reflect underlying differences in vaccine performance and the mechanisms of immune protection between rodents and NHP.In the current study, we examined whether DNA plasmid-based vaccines could be improved to increase potency in NHP and compared immunogenicity of this vaccine modality with those of viral vector and prime-boost approaches. DNA-vectored vaccines were modified by codon optimizing gene target inserts for enhanced expression in primates. These vectors induced antigen-specific cellular and humoral immune responses similar to immunization using a recombinant adenoviral vector and provided protection after lethal challenge with MARV Angola. However, macaques vaccinated with DNA vectors exhibited clinical symptoms associated with MARV hemorrhagic fever (MHF) that were absent in NHP receiving a single inoculation with recombinant adenovirus (rAd) vectors, suggesting qualitative differences in the immune responses elicited by the different modalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号