首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1435篇
  免费   127篇
  1562篇
  2023年   5篇
  2022年   13篇
  2021年   34篇
  2020年   15篇
  2019年   16篇
  2018年   27篇
  2017年   26篇
  2016年   44篇
  2015年   72篇
  2014年   81篇
  2013年   93篇
  2012年   105篇
  2011年   102篇
  2010年   76篇
  2009年   63篇
  2008年   100篇
  2007年   77篇
  2006年   72篇
  2005年   63篇
  2004年   58篇
  2003年   51篇
  2002年   48篇
  2001年   25篇
  2000年   17篇
  1999年   25篇
  1997年   6篇
  1996年   10篇
  1995年   12篇
  1994年   9篇
  1993年   7篇
  1992年   11篇
  1991年   11篇
  1990年   7篇
  1989年   11篇
  1988年   12篇
  1987年   12篇
  1986年   11篇
  1984年   7篇
  1983年   9篇
  1982年   11篇
  1981年   13篇
  1980年   12篇
  1979年   14篇
  1978年   12篇
  1977年   5篇
  1976年   6篇
  1975年   4篇
  1974年   5篇
  1972年   5篇
  1968年   5篇
排序方式: 共有1562条查询结果,搜索用时 15 毫秒
91.
Obligatory homologous recombination (HR) is required for chiasma formation and chromosome segregation in meiosis I. Meiotic HR is initiated by DNA double-strand breaks (DSBs), generated by Spo11, a homologue of the archaebacterial topoisomerase subunit Top6A. In Saccharomyces cerevisiae, Rad50, Mre11 and Com1/Sae2 are essential to process an intermediate of the cleavage reaction consisting of Spo11 covalently linked to the 5' termini of DNA. While Rad50 and Mre11 also confer genome stability to vegetative cells and are well conserved in evolution, Com1/Sae2 was believed to be fungal-specific. Here, we identify COM1/SAE2 homologues in all eukaryotic kingdoms. Arabidopsis thaliana Com1/Sae2 mutants are sterile, accumulate AtSPO11-1 during meiotic prophase and fail to form AtRAd51 foci despite the presence of unrepaired DSBs. Furthermore, DNA fragmentation in AtCom1 is suppressed by eliminating AtSPO11-1. In addition, AtCOM1 is specifically required for mitomycin C resistance. Interestingly, we identified CtIP, an essential protein interacting with the DNA repair machinery, as the mammalian homologue of Com1/Sae2, with important implications for the molecular role of CtIP.  相似文献   
92.
Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long-term dynamics in methanotrophic activity and the methanotroph community in the coastal oxygen minimum zone (OMZ) of Golfo Dulce, Costa Rica, combining biogeochemical analyses, experimental incubations and 16S rRNA gene sequencing over 3 consecutive years. Our results demonstrate a stable redox zonation across the years with high concentrations of methane (up to 1.7 μmol L−1) in anoxic bottom waters. However, we also measured high activities of anaerobic methane oxidation in the OMZ core (rate constant, k, averaging 30 yr−1 in 2018 and 8 yr−1 in 2019–2020). The OPU3 and Deep Sea-1 clades of the Methylococcales were implicated as conveyors of the activity, peaking in relative abundance 5–25 m below the oxic–anoxic interface and in the deep anoxic water respectively. Although their genetic capacity for anaerobic methane oxidation remains unexplored, their sustained high relative abundance indicates an adaptation of these clades to the anoxic, methane-rich OMZ environment, allowing them to play major roles in mitigating methane fluxes.  相似文献   
93.
Treatment of the Daudi line of human lymphoblastoid cells with concentrations of human interferons within the physiological range progressively inhibits cell proliferation over 1-4 days. Rigorous measurement of the overall rate of protein synthesis during this period, using a concentration of [3H]phenylalanine sufficient to equalize the specific radioactivity of intracellular and extracellular precursor pools, shows that protein synthesis becomes progressively inhibited as the growth inhibition develops. There is a strong correlation between inhibition of amino acid incorporation and inhibition of cell proliferation. In contrast, we find no evidence for any increase in protein degradation rate under these conditions. These results suggest that interferon treatment of susceptible cells can inhibit protein synthesis even in the absence of virus infection and that this inhibition is of a sufficient magnitude to account for the anti-proliferative effect.  相似文献   
94.
In a clinical setting it seems to be normal these days that a relevant proportion or even the majority of different bacterial species has already one or more acquired antibiotic resistances. Unfortunately, the overuse of antibiotics for livestock breeding and medicine has also altered the wild-type resistance profiles of many bacterial species in different environmental settings. As a matter of fact, getting in contact with resistant bacteria is no longer restricted to hospitals. Beside food and food production, the aquatic environment might also play an important role as reservoir and carrier. The aim of this study was the assessment of the resistance patterns of Escherichia coli and Klebsiella spp. out of surface water without prior enrichment and under non-selective culture conditions (for antibiotic resistance). In addition, the presence of clinically important extended spectrum beta lactamase (ESBL) and carbapenmase harboring Enterobacteriaceae should be investigated. During Joint Danube Survey 3 (2013), water samples were taken over the total course of the River Danube. Resistance testing was performed for 21 different antibiotics. Samples were additionally screened for ESBL or carbapenmase harboring Enterobacteriaceae. 39% of all isolated Escherichia coli and 15% of all Klebsiella spp. from the river Danube had at least one acquired resistance. Resistance was found against all tested antibiotics except tigecycline. Taking a look on the whole stretch of the River Danube the proportion of multiresistances did not differ significantly. In total, 35 ESBL harboring Enterobacteriaceae, 17 Escherichia coli, 13 Klebsiella pneumoniae and five Enterobacter spp. were isolated. One Klebsiella pneumoniae harboring NMD-1 carbapenmases and two Enterobacteriaceae with KPC-2 could be identified. Human generated antibiotic resistance is very common in E. coli and Klebsiella spp. in the River Danube. Even isolates with resistance patterns normally associated with intensive care units are present.  相似文献   
95.
N-(m-Nitrophenyl)-beta-D-glucopyranosylamine (Gln), N-(N-methylphenyl)-beta-D-glucopyranosylamine (Glm), N-beta-D-glucopyranosylpyrazole (Glp), and N-beta-D-glucopyranosylimidazole (Gli) have been synthesized. Their basicity constants, pKb, determined in methanol were, respectively, 14.99, 14.36, 15.04, and 9.74. The derivatives of secondary amines (Glm, Glp, and Gli) did not mutarotate in methanol in the presence of 3,5-dinitrobenzoic acid and hydrochloric acid. The heats of formation and entropies were calculated by the AM1 and PM3 methods for the glucosylamines and their cations under consideration of two plausible protonation centers. Thermodynamic parameters for the proton transfer in the reaction: glucosylamine + CH3OH2+ = glucosylamineH+ + CH3OH were determined and the protonation center in the glucosylamine molecule was identified. The mechanism of mutarotation of the glucosylamines is discussed and the conclusion made that formation of an acyclic immonium cation is not a satisfactory condition for the reaction to proceed.  相似文献   
96.
Tumour cells are often sensitized by interferons to the effects of tumour necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL). We have demonstrated previously that TRAIL has an inhibitory effect on protein synthesis [Jeffrey IW, Bushell M, Tilleray VJ, Morley S & Clemens MJ (2002) Cancer Res62, 2272-2280] and we have therefore examined the consequences of prior interferon-alpha treatment for the sensitivity of translation to inhibition by TRAIL. Interferon treatment alone has only a minor effect on protein synthesis but it sensitizes both MCF-7 cells and HeLa cells to the downregulation of translation by TRAIL. The inhibition of translation is characterized by increased phosphorylation of the alpha subunit of eukaryotic initiation factor eIF2 and dephosphorylation of the eIF4E-binding protein 4E-BP1. Both of these effects, as well as the decrease in overall protein synthesis, require caspase-8 activity, although they precede overt apoptosis by several hours. Interferon-alpha enhances the level and/or the extent of activation of caspase-8 by TRAIL, thus providing a likely explanation for the sensitization of cells to the inhibition of translation.  相似文献   
97.
The proteomic analysis of tissue samples is an analytical challenge, because identified gene products not only have to be assigned to subcellular structures, but also to cell subpopulations. We here report a strategy of combined subcellular proteomic profiling and in situ hybridization to assign proteins to subcellular sites in subsets of cells within the dorsal region of rat spinal cord. With a focus on synaptic membranes, which represent a complex membrane protein structure composed of multiple integral membrane proteins and networks of accessory structural proteins, we also compared different two-dimensional gel electrophoresis systems for the separation of the proteins. Using MALDI mass spectrometric protein identification based on peptide mass fingerprints, we identified in total 122 different gene products within the different synaptic membrane subfractions. The tissue structure of the dorsal region of the spinal cord is complex, and different layers of neurons can be distinguished neuroanatomically. Proteomic data combined with an in situ hybridization analysis for the detection of mRNA was used to assign selected gene products, namely the optical atrophy protein OPA-1, the presynaptic cytomatrix protein KIAA0378/CAST1, and the uncharacterized coiled-coil-helix-coiled-coil-helix domain containing protein 3 (hypothetical protein FLJ20420), to cell subsets of the dorsal area of the spinal cord. Most striking, KIAA0378/CAST1 mRNA was found only sparsely within the dorsal horn of the spinal cord, but highly abundant within the dorsal root ganglion. This finding, combined with the identification of KIAA0378/CAST1 within the synaptic membrane fraction of the spinal cord at the protein level, are consistent with the reported presynaptic localization of CAST, predominantly within the tissue we investigated primarily attributable to primary afferent sensory neurons. Our approach may be of use in broader studies to characterize the proteomes of neural tissue.  相似文献   
98.
99.

Plant breeding aims to develop improved crop varieties. Many crops have a polyploid and often highly heterozygous genome, which may make breeding of polyploid crops a real challenge. The efficiency of traditional breeding based on crossing and selection has been improved by using marker-assisted selection (MAS), and MAS is also being applied in polyploid crops, which helps e.g. for introgression breeding. However, methods such as random mutation breeding are difficult to apply in polyploid crops because there are multiple homoeologous copies (alleles) of each gene. Genome editing technology has revolutionized mutagenesis as it enables precisely selecting targets. The genome editing tool CRISPR/Cas is especially valuable for targeted mutagenesis in polyploids, as all alleles and/or copies of a gene can be targeted at once. Even multiple genes, each with multiple alleles, may be targeted simultaneously. In addition to targeted mutagenesis, targeted replacement of undesirable alleles by desired ones may become a promising application of genome editing for the improvement of polyploid crops, in the near future. Several examples of the application of genome editing for targeted mutagenesis are described here for a range of polyploid crops, and achievements and bottlenecks are highlighted.

  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号