首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1917篇
  免费   178篇
  国内免费   1篇
  2023年   8篇
  2022年   28篇
  2021年   61篇
  2020年   28篇
  2019年   31篇
  2018年   48篇
  2017年   48篇
  2016年   73篇
  2015年   111篇
  2014年   125篇
  2013年   133篇
  2012年   159篇
  2011年   150篇
  2010年   98篇
  2009年   88篇
  2008年   133篇
  2007年   97篇
  2006年   92篇
  2005年   68篇
  2004年   67篇
  2003年   68篇
  2002年   61篇
  2001年   27篇
  2000年   16篇
  1999年   25篇
  1998年   5篇
  1997年   8篇
  1996年   10篇
  1995年   16篇
  1994年   8篇
  1993年   8篇
  1992年   12篇
  1991年   11篇
  1990年   7篇
  1989年   11篇
  1988年   13篇
  1987年   11篇
  1986年   10篇
  1984年   6篇
  1983年   6篇
  1982年   11篇
  1981年   12篇
  1980年   12篇
  1979年   12篇
  1978年   11篇
  1977年   6篇
  1976年   6篇
  1974年   5篇
  1972年   5篇
  1968年   5篇
排序方式: 共有2096条查询结果,搜索用时 78 毫秒
991.
The protein Sam68 is involved in many cellular processes such as cell-cycle regulation, RNA metabolism, or signal transduction. Sam68 comprises a central RNA-binding domain flanked by unstructured tails containing docking sites for signalling proteins including seven proline-rich sequences (denoted P0 to P6) as potential SH3-domain binding motifs. To comprehensively assess Sam68-SH3-interactions, we applied a phage-display screening of a library containing all approx. 300 human SH3 domains. Thereby we identified five new (from intersectin 2, the osteoclast stimulating factor OSF, nephrocystin, sorting nexin 9, and CIN85) and seven already known high-confidence Sam68-ligands (mainly from the Src-kinase family), as well as several lower-affinity binders. Interaction of the high-affinity Sam68-binders was confirmed in independent assays in vitro (phage-ELISA, GST-pull-down) and in vivo (FACS-based FRET-analysis with CFP- and YFP-tagged proteins). Fine-mapping analyses with peptides established P0, P3, P4, and P5 as exclusive docking-sites for SH3 domains, which showed varying preferences for these motifs. Mutational analyses identified individual residues within the proline-rich motifs being crucial for the interactions. Based on these data, we generated a Sam68-mutant incapable of interacting with SH3 domains any more, as subsequently demonstrated by FRET-analyses. In conclusion, we present a thorough characterization of Sam68's interplay with the SH3 proteome. The observed interaction between Sam68 and OSF complements the known Sam68-Src and OSF-Src interactions. Thus, we propose, that Sam68 functions as a classical scaffold protein in this context, assembling components of an osteoclast-specific signalling pathway.  相似文献   
992.
The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system--partly conferred by catechol-O-methyltransferase (COMT) gene variation--for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample of 95 healthy adults, we investigated effects of the functional COMT Val158Met polymorphism, caffeine as an adenosine A2A receptor antagonist (300 mg in a placebo-controlled intervention design) and childhood maltreatment (CTQ) as well as their interaction on the affect-modulated startle response as a neurobiologically founded defensive reflex potentially related to fear- and distress-related disorders. COMT val/val genotype significantly increased startle magnitude in response to unpleasant stimuli, while met/met homozygotes showed a blunted startle response to aversive pictures. Furthermore, significant gene-environment interaction of COMT Val158Met genotype with CTQ was discerned with more maltreatment being associated with higher startle potentiation in val/val subjects but not in met carriers. No main effect of or interaction effects with caffeine were observed. Results indicate a main as well as a GxE effect of the COMT Val158Met variant and childhood maltreatment on the affect-modulated startle reflex, supporting a complex pathogenetic model of the affect-modulated startle reflex as a basic neurobiological defensive reflex potentially related to anxiety and affective disorders.  相似文献   
993.
994.
ATP Binding Cassette B1 (ABCB1) is a transporter with a broad substrate specificity involved in the elimination of several carcinogens from the gut. Several polymorphic variants within the ABCB1 gene have been reported as modulators of ABCB1-mediated transport. We investigated the impact of ABCB1 genetic variants on colorectal cancer (CRC) risk. A hybrid tagging/functional approach was performed to select 28 single nucleotide polymorphisms (SNPs) that were genotyped in 1,321 Czech subjects, 699 CRC cases and 622 controls. In addition, six potentially functional SNPs were genotyped in 3,662 German subjects, 1,809 cases and 1,853 controls from the DACHS study. We found that three functional SNPs (rs1202168, rs1045642 and rs868755) were associated with CRC risk in the German population. Carriers of the rs1202168_T and rs868755_T alleles had an increased risk for CRC (Ptrend = 0.016 and 0.029, respectively), while individuals bearing the rs1045642_C allele showed a decreased risk of CRC (Ptrend = 0.022). We sought to replicate the most significant results in an independent case-control study of 3,803 subjects, 2,169 cases and 1,634 controls carried out in the North of Germany. None of the SNPs tested were significantly associated with CRC risk in the replication study. In conclusion, in this study of about 8,800 individuals we show that ABCB1 gene polymorphisms play at best a minor role in the susceptibility to CRC.  相似文献   
995.

Background

Amyotrophic lateral sclerosis (ALS) is a fatal disorder of the motor neuron system with poor prognosis and marginal therapeutic options. Current clinical diagnostic criteria are based on electrophysiological examination and exclusion of other ALS-mimicking conditions. Neuroprotective treatments are, however, most promising in early disease stages. Identification of disease-specific CSF biomarkers and associated biochemical pathways is therefore most relevant to monitor disease progression, response to neuroprotective agents and to enable early inclusion of patients into clinical trials.

Methods and Findings

CSF from 35 patients with ALS diagnosed according to the revised El Escorial criteria and 23 age-matched controls was processed using paramagnetic bead chromatography for protein isolation and subsequently analyzed by MALDI-TOF mass spectrometry. CSF protein profiles were integrated into a Random Forest model constructed from 153 mass peaks. After reducing this peak set to the top 25%, a classifier was built which enabled prediction of ALS with high accuracy, sensitivity and specificity. Further analysis of the identified peptides resulted in a panel of five highly sensitive ALS biomarkers. Upregulation of secreted phosphoprotein 1 in ALS-CSF samples was confirmed by univariate analysis of ELISA and mass spectrometry data. Further quantitative validation of the five biomarkers was achieved in an 80-plex Multiple Reaction Monitoring mass spectrometry assay.

Conclusions

ALS classification based on the CSF biomarker panel proposed in this study could become a valuable predictive tool for early clinical risk stratification. Of the numerous CSF proteins identified, many have putative roles in ALS-related metabolic processes, particularly in chromogranin-mediated secretion signaling pathways. While a stand-alone clinical application of this classifier will only be possible after further validation and a multicenter trial, it could be readily used to complement current ALS diagnostics and might also provide new insights into the pathomechanisms of this disease in the future.  相似文献   
996.
Encapsulating peritoneal sclerosis (EPS) is a life threatening complication of peritoneal dialysis (PD). Podoplanin is a glycoprotein expressed by mesothelial cells, lymphatic endothelial cells, and myofibroblasts in peritoneal biopsies from patients with EPS. To evaluate podoplanin as a marker of EPS we measured podoplanin mRNA and described the morphological patterns of podoplanin-positive cells in EPS. Included were 20 peritoneal biopsies from patients with the diagnosis of EPS (n = 5), patients on PD without signs of EPS (n = 5), and control patients (uremic patients not on PD, n = 5, non-uremic patients n = 5). EPS patient biopsies revealed significantly elevated levels of podoplanin mRNA (p<0.05). In 24 peritoneal biopsies from patients with EPS, podoplanin and smooth muscle actin (SMA) were localized by immunohistochemistry. Four patterns of podoplanin distribution were distinguishable. The most common pattern (8 of 24) consisted of organized, longitudinal layers of podoplanin-positive cells and vessels in the fibrotic zone (“organized” pattern). 7 of 24 biopsies demonstrated a diffuse distribution of podoplanin-positive cells, accompanied by occasional, dense clusters of podoplanin-positive cells. Five biopsies exhibited a mixed pattern, with some diffuse areas and some organized areas ("mixed"). These contained cuboidal podoplanin-positive cells within SMA-negative epithelial structures embedded in extracellular matrix. Less frequently observed was the complete absence of, or only focal accumulations of podoplanin-positive fibroblasts outside of lymphatic vessels (podoplanin “low”, 4 of 24 biopsies). Patients in this group exhibited a lower index of systemic inflammation and a longer symptomatic period than in EPS patients with biopsies of the "mixed" type (p<0.05). In summary we confirm the increased expression of podoplanin in EPS, and distinguish EPS biopsies according to different podoplanin expression patterns which are associated with clinical parameters. Podoplanin might serve as a useful adjunct to the morphological workup of peritoneal biopsies.  相似文献   
997.
Mutations in SOD1 cause hereditary variants of the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). Pathophysiology of the disease is non-cell-autonomous, with toxicity deriving also from glia. In particular, microglia contribute to disease progression. Methylene blue (MB) inhibits the effect of nitric oxide, which mediates microglial responses to injury. In vivo 2P-LSM imaging was performed in ALS-linked transgenic SOD1(G93A) mice to investigate the effect of MB on microglia-mediated inflammation in the spinal cord. Local superfusion of the lateral spinal cord with MB inhibited the microglial reaction directed at a laser-induced axon transection in control and SOD1(G93A) mice. In vitro, MB at high concentrations inhibited cytokine and chemokine release from microglia of control and advanced clinical SOD1(G93A) mice. Systemic MB-treatment of SOD1(G93A) mice at early preclinical stages significantly delayed disease onset and motor dysfunction. However, an increase of MB dose had no additional effect on disease progression; this was unexpected in view of the local anti-inflammatory effects. Furthermore, in vivo imaging of systemically MB-treated mice also showed no alterations of microglia activity in response to local lesions. Thus although systemic MB treatment had no effect on microgliosis, instead, its use revealed an important influence on motor neuron survival as indicated by an increased number of lumbar anterior horn neurons present at the time of disease onset. Thus, potentially beneficial effects of locally applied MB on inflammatory events contributing to disease progression could not be reproduced in SOD1(G93A) mice via systemic administration, whereas systemic MB application delayed disease onset via neuroprotection.  相似文献   
998.
Microalgae can be used to produce versatile high-value fuels, such as methane, biodiesel, ethanol, or hydrogen gas. One of the most important factors that influence the economics of microalgae cultivation is the primary production of biomass per unit area. This is determined by productivity rates during cultivation, which are influenced by the local climate conditions (solar irradiation, temperature). To compare locations in different climate regions for microalgae cultivation, a mathematical model for an idealized closed photobioreactor was developed. The applied growth kinetics were based on theoretical maximum photon-conversion efficiencies (for the conversion of solar energy to chemical energy in the form of biomass). Known or estimated temperature effects for different algal strains were incorporated. The model was used to calculate hourly average areal productivity rates as well as annual primary production values under local conditions at seven example locations. Here, hourly weather data (solar irradiance and air temperature) were taken into account. According to these model calculations, maximum annual yields were achieved in regions with high irradiation and temperature patterns in or near the optimum range of the specific algal strain (here, desert and equatorial humid climates). The developed model can be used as a tool to assess and compare individual locations for microalgae cultivation.  相似文献   
999.
1000.
Special tetrasubstituted pyridazines are potent fungicides by promoting the tubulin polymerisation, hereby disrupting the microtubule dynamics in the fungus. They are monocyclic analogs of similar substituted triazolopyrimidines and pyridopyrazines with the same mode of action. The fungicidal activity of these pyridazines was evaluated against the plant pathogens Botrytis cinerea (grey mould), Mycosphaerella graminicola (wheat leaf blotch) and Alternaria solani (potato and tomato early blight). Structure-activity relationship studies revealed the importance of a methyl and a chlorine substituent next to both ring nitrogen atoms and two aryl or heteroaryl groups in the other two pyridazine positions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号