首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  2023年   2篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2007年   5篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有38条查询结果,搜索用时 125 毫秒
31.
Events of viral contaminations occurring during the production of biopharmaceuticals have been publicly reported by the biopharmaceutical industry. Upstream raw materials were often identified as the potential source of contamination. Viral contamination risk can be mitigated by inactivating or eliminating potential viruses of cell culture media and feed solutions. Different methods can be used alone or in combination on raw materials, cell culture media, or feed solutions such as viral inactivation technologies consisting mainly of high temperature short time, ultraviolet irradiation, and gamma radiation technologies or such as viral removal technology for instance nanofiltration. The aim of this review is to present the principle, the advantages, and the challenges of high temperature short time (HTST) technology. Here, we reviewed effectiveness of HTST treatment and its impact on media (filterability of media, degradation of components), on process performance (cell growth, cell metabolism, productivity), and product quality based on knowledge shared in the literature.  相似文献   
32.
33.
34.
Rats may develop sustained tolerance against lethal cerebral ischemia after exposure to a sublethal ischemic insult (ischemic preconditioning (IPC)). Two windows for the induction of tolerance by IPC have been proposed, one that occurs within 1h following IPC, and the other one that occurs 1-3 days after IPC. An important difference between these two windows is that in contrast to the second window, neuroprotection against lethal ischemia is transient in the first window. We tested the hypothesis that rapid IPC would reduce or prevent ischemia-induced changes in mitochondrial function. IPC and ischemia were produced by bilateral carotid occlusions and systemic hypotension (50 mmHg) for 2 and 10 min, respectively. The non-synaptosomal mitochondria were harvested 30 min following the 10 min 'test' ischemia. Mitochondrial rate of respiration decreased by 10% when the substrates were pyruvate and malate, and 29% when the substrates were ascorbic acid and N,N,N',N'-tetramethyl-p-phenylenediamine ( P< 0.01). The activities of complex I-III decreased in ischemic group by 16, 23 (P < 0.05) and 24%, respectively. IPC was unable to prevent decreases in the rate of respiration and activities of different complexes. These data suggest that rapidly induced IPC is unable to protect the integrity of mitochondrial oxidative phosphorylation following cerebral ischemia, perhaps explaining why IPC only provides transitory protection in the 'first window'.  相似文献   
35.
36.
An anaerobic reactor and a fixed-bed adsorption sequential system (FBAS) were applied to remove color from kraft mill effluent. Under anaerobic conditions, Biological Oxygen Demand (BOD5) removal was between 84 to 90% w/w, while Chemical Oxygen Demand (COD) removal ranged between 46 to 55% w/w. Total phenolic compounds were poorly removed (8 to 15% w/w) whereas the color was not removed by anaerobic digestion. For the FBAS system, three different columns were packed with natural and activated (calcinated and acidified) allophanic soil and fed with kraft mill anaerobic effluent. In activated soil columns, color and total phenolic compounds removal were around 95% w/w, whereas in the natural soil column the values were 87% w/w and 81% w/w, respectively.  相似文献   
37.
Animal migration impacts organismal health and parasite transmission: migrants are simultaneously exposed to parasites and able to reduce infection for both individuals and populations. However, these dynamics are difficult to study; empirical studies reveal disparate results while existing theory makes assumptions that simplify natural complexity. Here, we systematically review empirical studies of migration and infection across taxa, highlighting key gaps in our understanding. Next, we develop a unified evolutionary framework incorporating different selective pressures of parasite–migration interactions while accounting for ecological complexity that goes beyond previous theory. Our framework generates diverse migration–infection patterns paralleling those seen in empirical systems, including partial and differential migration. Finally, we generate predictions about which mechanisms dominate which empirical systems to guide future studies. Our framework provides an overarching understanding of selective pressures shaping migration patterns in the context of animal health and disease, which is critical for predicting how environmental change may threaten migration.  相似文献   
38.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号