首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2015年   2篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   5篇
  2003年   1篇
  2002年   3篇
  1989年   1篇
排序方式: 共有27条查询结果,搜索用时 125 毫秒
21.
Although the number of fish species that have been studied for both hypoxia/anoxia tolerance and ammonia tolerance are few, there appears to be a correlation between the ability to survive these two insults. After establishing this correlation with examples from the literature, and after examining the role Peter Lutz played in catalyzing this convergent interest in two variables, this article explores potential mechanisms underpinning this correlation. We draw especially on the larger body of information for two human diseases with the same effected organ (brain), namely stroke and hepatic encephalopathy. While several dissimilarities exist between the responses of vertebrates to anoxia and hyperammonemia, one consistent observation in both conditions is an overactivation of NMDA receptors or glutamate neurotoxicity. We propose a glutamate excitotoxicity hypothesis to explain the correlation between ammonia and hypoxia resistance in fish. Furthermore, we suggest several experimental paths to test this hypothesis.  相似文献   
22.
The effects of normothermia and delayed hypothermia on the levels of N-acetylaspartate (NAA), reduced glutathione (GSH) and the activities of mitochondrial complex I, II-III, IV and citrate synthase were measured in brain homogenates obtained from anaesthetized neonatal pigs following transient in vivo hypoxia-ischaemia. In the normothermic animals there was a significant decrease in complex I activity and in the levels of GSH and NAA when compared to the controls. Delayed hypothermia preserved NAA and GSH at control levels and enhanced the rate of complex II-III activity. There was correlation (R = 0.79) between GSH and NAA levels when data from all three experimental groups were analyzed. Citrate synthase activity was not significantly different in the three groups, indicating maintenance of mitochondrial integrity. These data suggest that delayed hypothermia affords protection of integrated mitochondrial function in the neonatal brain following transient hypoxia-ischaemia.  相似文献   
23.
24.
25.
Rats may develop sustained tolerance against lethal cerebral ischemia after exposure to a sublethal ischemic insult (ischemic preconditioning (IPC)). Two windows for the induction of tolerance by IPC have been proposed, one that occurs within 1h following IPC, and the other one that occurs 1-3 days after IPC. An important difference between these two windows is that in contrast to the second window, neuroprotection against lethal ischemia is transient in the first window. We tested the hypothesis that rapid IPC would reduce or prevent ischemia-induced changes in mitochondrial function. IPC and ischemia were produced by bilateral carotid occlusions and systemic hypotension (50 mmHg) for 2 and 10 min, respectively. The non-synaptosomal mitochondria were harvested 30 min following the 10 min 'test' ischemia. Mitochondrial rate of respiration decreased by 10% when the substrates were pyruvate and malate, and 29% when the substrates were ascorbic acid and N,N,N',N'-tetramethyl-p-phenylenediamine ( P< 0.01). The activities of complex I-III decreased in ischemic group by 16, 23 (P < 0.05) and 24%, respectively. IPC was unable to prevent decreases in the rate of respiration and activities of different complexes. These data suggest that rapidly induced IPC is unable to protect the integrity of mitochondrial oxidative phosphorylation following cerebral ischemia, perhaps explaining why IPC only provides transitory protection in the 'first window'.  相似文献   
26.
27.
Events of viral contaminations occurring during the production of biopharmaceuticals have been publicly reported by the biopharmaceutical industry. Upstream raw materials were often identified as the potential source of contamination. Viral contamination risk can be mitigated by inactivating or eliminating potential viruses of cell culture media and feed solutions. Different methods can be used alone or in combination on raw materials, cell culture media, or feed solutions such as viral inactivation technologies consisting mainly of high temperature short time, ultraviolet irradiation, and gamma radiation technologies or such as viral removal technology for instance nanofiltration. The aim of this review is to present the principle, the advantages, and the challenges of high temperature short time (HTST) technology. Here, we reviewed effectiveness of HTST treatment and its impact on media (filterability of media, degradation of components), on process performance (cell growth, cell metabolism, productivity), and product quality based on knowledge shared in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号