首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1531篇
  免费   188篇
  1719篇
  2021年   38篇
  2020年   18篇
  2019年   21篇
  2018年   25篇
  2017年   16篇
  2016年   41篇
  2015年   50篇
  2014年   58篇
  2013年   71篇
  2012年   71篇
  2011年   87篇
  2010年   49篇
  2009年   44篇
  2008年   55篇
  2007年   72篇
  2006年   64篇
  2005年   48篇
  2004年   49篇
  2003年   54篇
  2002年   47篇
  2001年   36篇
  2000年   36篇
  1999年   38篇
  1998年   21篇
  1997年   18篇
  1996年   28篇
  1995年   18篇
  1994年   18篇
  1993年   16篇
  1992年   25篇
  1991年   16篇
  1990年   19篇
  1989年   20篇
  1988年   18篇
  1987年   25篇
  1986年   21篇
  1985年   26篇
  1984年   17篇
  1983年   18篇
  1982年   22篇
  1981年   23篇
  1980年   13篇
  1979年   18篇
  1978年   23篇
  1977年   21篇
  1976年   12篇
  1975年   22篇
  1974年   13篇
  1973年   17篇
  1972年   18篇
排序方式: 共有1719条查询结果,搜索用时 15 毫秒
121.
Confirming melanocytic lineage and purity is important for experiments using cultured human melanocytes. The objective of this study was to develop a simple, reliable method to evaluate and archive cultured melanocytic cells. Melanocytes were isolated from adult skin biopsies or from neonatal foreskins using standard culturing methods. Fibrin cell blocks (FCBs) were prepared from cultured cells at passages two and six. Fibrin blocks were paraffin-embedded and sectioned for immunohistochemical (CD68, Melan-A, and HMB-45) and H & E staining. Flow cytometry was performed (Melan-A) at passage six. A mixing experiment with cultured melanocytes and fibroblasts was performed and cell population purity was determined by manual counts of positively staining cells in the FCBs and by flow cytometry. The FCB method of evaluating population purity was validated experimentally and by correlation with flow cytometry results. Preparation of a FCB followed by immunohistochemical staining is an easy and inexpensive way to confirm melanocytic lineage, estimate population purity, and provide a permanent archive of cultured cells.  相似文献   
122.
The transferrin receptor (TfR) of Trypanosoma brucei is a heterodimer attached to the surface membrane by a glycosylphosphatidylinositol (GPI) anchor. The TfR is restricted to the flagellar pocket, a deep invagination of the plasma membrane. The membrane of the flagellar pocket and the rest of the cell surface are continuous, and the mechanism that selectively retains the TfR in the pocket is unknown. Here, we report that the TfR is retained in the flagellar pocket by a specific and saturable mechanism. In bloodstream-form trypanosomes transfected with the TfR genes, TfR molecules escaped flagellar pocket retention and accumulated on the entire surface, even at modest (threefold) overproduction levels. Similar surface accumulation was observed when the TfR levels were physiologically upregulated threefold when trypanosomes were starved for transferrin. These results suggest that the TfR flagellar pocket retention mechanism is easily saturated and that control of the expression level is critical to maintain the restricted surface distribution of the receptor.  相似文献   
123.
eIF5 stimulates the GTPase activity of eIF2 bound to Met-tRNA(i)(Met), and its C-terminal domain (eIF5-CTD) bridges interaction between eIF2 and eIF3/eIF1 in a multifactor complex containing Met-tRNA(i)(Met). The tif5-7A mutation in eIF5-CTD, which destabilizes the multifactor complex in vivo, reduced the binding of Met-tRNA(i)(Met) and mRNA to 40S subunits in vitro. Interestingly, eIF5-CTD bound simultaneously to the eIF4G subunit of the cap-binding complex and the NIP1 subunit of eIF3. These interactions may enhance association of eIF4G with eIF3 to promote mRNA binding to the ribosome. In vivo, tif5-7A eliminated eIF5 as a stable component of the pre-initiation complex and led to accumulation of 48S complexes containing eIF2; thus, conversion of 48S to 80S complexes is the rate-limiting defect in this mutant. We propose that eIF5-CTD stimulates binding of Met-tRNA(i)(Met) and mRNA to 40S subunits through interactions with eIF2, eIF3 and eIF4G; however, its most important function is to anchor eIF5 to other components of the 48S complex in a manner required to couple GTP hydrolysis to AUG recognition during the scanning phase of initiation.  相似文献   
124.
The 340-nucleotide RNA component of Saccharomyces cerevisiae RNase MRP is encoded by the single-copy essential gene, NME1. To gain additional insight into the proposed structure and functions of this endoribonuclease, we have extensively mutagenized the NME1 gene and characterized yeast strains expressing mutated forms of the RNA using a gene shuffle technique. Strains expressing each of 26 independent mutations in the RNase MRP RNA gene were characterized for their ability to grow at various temperatures and on various carbon sources, stability of the RNase MRP RNA and processing of the 5.8S rRNA (a nuclear function of RNase MRP). 11 of the mutations resulted in a lethal phenotype, six displayed temperature-conditional lethality, and several preferred a non-fermentable carbon source for growth. In those mutants that exhibited altered growth phenotypes, the severity of the growth defect was directly proportional to the severity of the 5.8S rRNA processing defect in the nucleus. Together this analysis has defined essential regions of the RNase MRP RNA and provides evidence that is consistent with the proposed function of the RNase MRP enzyme.  相似文献   
125.
Viral vectors have become important tools to effectively transfer genes into terminally differentiated cells, including neurons. However, the rational for selection of the promoter for use in viral vectors remains poorly understood. Comparison of promoters has been complicated by the use of different viral backgrounds, transgenes, and target tissues. Adenoviral vectors were constructed in the same vector background to directly compare three viral promoters, the human cytomegalovirus (CMV) immediate-early promoter, the Rous sarcoma virus (RSV) long terminal repeat, and the adenoviral E1A promoter, driving expression of the Escherichia coli lacZ gene or the gene for the enhanced green fluorescent protein. The temporal patterns, levels of expression, and cytotoxicity from the vectors were analyzed. In sensory neuronal cultures, the CMV promoter produced the highest levels of expression, the RSV promoter produced lower levels, and the E1A promoter produced limited expression. There was no evidence of cytotoxicity produced by the viral vectors. In vivo analyses following stereotaxic injection of the vector into the rat hippocampus demonstrated differences in the cell-type-specific expression from the CMV promoter versus the RSV promoter. In acutely prepared hippocampal brain slices, marked differences in the cell type specificity of expression from the promoters were confirmed. The CMV promoter produced expression in hilar regions and pyramidal neurons, with minimal expression in the dentate gyrus. The RSV promoter produced expression in dentate gyrus neurons. These results demonstrate that the selection of the promoter is critical for the success of the viral vector to express a transgene in specific cell types.  相似文献   
126.
127.
128.
Inorganic mercury in contaminated soils and sediments is relatively immobile, though biological and chemical processes can transform it to more toxic and bioavailable methylmercury. Methylmercury is neurotoxic to vertebrates and is biomagnified in animal tissues as it is passed from prey to predator. Traditional remediation strategies for mercury contaminated soils are expensive and site-destructive. As an alternative we propose the use of transgenic aquatic, salt marsh, and upland plants to remove available inorganic mercury and methylmercury from contaminated soils and sediments. Plants engineered with a modified bacterial mercuric reductase gene, merA, are capable of converting Hg(II) taken up by roots to the much less toxic Hg(0), which is volatilized from the plant. Plants engineered to express the bacterial organo-mercurial lyase gene, merB, are capable of converting methylmercury taken up by plant roots into sulfhydryl-bound Hg(II). Plants expressing both genes are capable of converting ionic mercury and methylmercury to volatile Hg(0) which is released into an enormous global atmospheric Hg(0) pool. To assess the phytoremediation capability of plants containing the merA gene, a variety of assays were carried out with the model plants Arabidopsis thaliana, and tobacco (Nicotiana tabacum).  相似文献   
129.
Many pathogenic bacteria interact with human integrins to enter host cells and to augment host colonization. Group A Streptococcus (GAS) employs molecular mimicry by direct interactions between the cell surface streptococcal collagen-like protein-1 (Scl1) and the human collagen receptor, integrin alpha2beta1. The collagen-like (CL) region of the Scl1 protein mediates integrin-binding, although, the integrin binding motif was not defined. Here, we used molecular cloning and site-directed mutagenesis to identify the GLPGER sequence as the alpha2beta1 and the alpha11beta1 binding motif. Electron microscopy experiments mapped binding sites of the recombinant alpha2-integrin-inserted domain to the GLPGER motif of the recombinant Scl (rScl) protein. rScl proteins and a synthetic peptide harboring the GLPGER motif mediated the attachment of C2C12-alpha2+myoblasts expressing the alpha2beta1 integrin as the sole collagen receptor. The C2C12-alpha11+myoblasts expressing the alpha11beta1 integrin also attached to GLPGER-harboring rScl proteins. Furthermore, the C2C12-alpha11+cells attached to rScl1 more efficiently than C2C12-alpha2+cells, suggesting that the alpha11beta1 integrin may have a higher binding affinity for the GLPGER sequence. Human endothelial cells and dermal fibroblasts adhered to rScl proteins, indicating that multiple cell types may recognize and bind the Scl proteins via their collagen receptors. This work is a stepping stone toward defining the utilization of collagen receptors by microbial collagen-like proteins that are expressed by pathogenic bacteria.  相似文献   
130.
Duodenal bile, urine, plasma, and feces from a child with hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency were analyzed by fast atom bombardment mass spectrometry and gas chromatography-mass spectrometry to investigate the formation and excretion of abnormal bile acids and bile alcohols. The biliary bile salts consisted of glycocholic acid (25%) and of sulfated and glycine conjugated di- and trihydroxycholenoic acids (55%), two C27 bile acids, and eleven sulfated bile alcohols (mainly tetrols, 20%), all having 3 beta,7 alpha-dihydroxy-delta 5 or 3 beta,7 alpha,12 alpha-trihydroxy-delta 5 ring structures. In plasma, sulfated cholenoic acids constituted 65% and unconjugated 3 beta,7 alpha-dihydroxy-5-cholestenoic acid 25% of the total level, 71 micrograms/ml. The urinary excretion of the former was 30.4 mg/day and that of unsaturated bile alcohol sulfates, mainly pentols, 7 mg/day. The predominant bile acid in feces was an unconjugated epimer of 3 beta,7 alpha,12 alpha-trihydroxy-5-cholenoic acid, and small amounts of cholic acid were present. The minimum total excretion was 11.3 mg/day. Treatment with chenodeoxycholic acid resulted in marked clinical improvement and normalized liver function tests. Further studies are needed to define the mechanism of action. Plasma bile acids decreased to 1.6 micrograms/ml and urinary excretion to 3.4 mg/day. Chenodeoxycholic and ursodeoxycholic acids became predominant in all samples. The fecal excretion of unsaturated cholenoic acid sulfates increased to 40 mg/day compared to 89 mg/day of saturated bile acids. The results provide further support for a defective hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency, and indicate that the 3 beta-hydroxy-delta 5 bile acids are formed via 7 alpha-hydroxycholesterol. The formation of glycocholic acid may be due to an incomplete enzyme defect or to transformation of the 3 beta-hydroxy-delta 5 structure by bacterial and hepatic enzymes during an enterohepatic circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号