首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   14篇
  2018年   7篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   9篇
  2007年   5篇
  2006年   8篇
  2005年   3篇
  2004年   8篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   7篇
  1997年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1982年   4篇
  1980年   7篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
  1942年   1篇
  1939年   1篇
  1938年   1篇
  1936年   1篇
  1935年   1篇
  1934年   1篇
  1933年   1篇
  1932年   2篇
  1931年   1篇
  1930年   1篇
  1928年   1篇
  1926年   1篇
  1925年   1篇
  1923年   1篇
  1914年   1篇
  1911年   1篇
排序方式: 共有178条查询结果,搜索用时 17 毫秒
91.
Pan W  Xin P  Clawson GA 《BioTechniques》2008,44(3):351-360
Standard systematic evolution of ligands by exponential enrichment (SELEX) protocols require libraries that contain two primers, one on each side of a central random domain, which allow amplification of target-bound sequences via PCR or RT-PCR. However, these primer sequences cause nonspecific binding by their nature (generally adding about 20 nt on each end of the random sequence of about 30-40 nt), and can result in large numbers of false-positive binding sequences and/or interfere with good binding random sequences. Here, we have developed two DNA-based methods that reduce and/or eliminate the primer sequences from the target-binding step, thus reducing or eliminating the interference caused by the primer sequences. In these methods, the starting selection libraries contain a central random sequence that is: (i) flanked by only 2 nt on each side (minimal primer); or (ii) flanked only by either a 2- or 0-nt overhand on the 3' end (primer-free). These methods allow primer regeneration and re-elimination after and before selection, are fast and simple, and don't require any chemical modifications for selection in a variety of conditions. Further, the selection rounds are performed with DNA oligomers, which are generally employed as end product aptamers.  相似文献   
92.
Anaplasma marginale, an ehrlichial pathogen of cattle and wild ruminants, is transmitted biologically by ticks. A developmental cycle of A. marginale occurs in a tick that begins in gut cells followed by infection of salivary glands, which are the site of transmission to cattle. Geographic isolates of A. marginale vary in their ability to be transmitted by ticks. In these experiments we studied transmission of two recent field isolates of A. marginale, an Oklahoma isolate from Wetumka, OK, and a Florida isolate from Okeechobee, FL, by two populations of Dermacentor variabilis males obtained from the same regions. The Florida and Oklahoma tick populations transmitted the Oklahoma isolate, while both tick populations failed to transmit the Florida isolate. Gut and salivary gland infections of A. marginale, as determined by quantitative PCR and microscopy, were detected in ticks exposed to the Oklahoma isolate, while these tissues were not infected in ticks exposed to the Florida isolate. An adhesion-recovery assay was used to study adhesion of the A. marginale major surface protein (MSP) 1a to gut cells from both tick populations and cultured tick cells. We demonstrated that recombinant Escherichia coli expressing Oklahoma MSP1a adhered to cultured and native D. variabilis gut cells, while recombinant E. coli expressing the Florida MSP1a were not adherent to either tick cell population. The MSP1a of the Florida isolate of A. marginale, therefore, was unable to mediate attachment to tick gut cells, thus inhibiting salivary gland infection and transmission to cattle. This is the first report of MSP1a being responsible for effecting infection and transmission of A. marginale by Dermacentor spp. ticks. The mechanism of tick infection and transmission of A. marginale is important in formulating control strategies and development of improved vaccines for anaplasmosis.  相似文献   
93.
Protein-disulfide isomerase (PDI) catalyzes the formation and isomerization of disulfides during oxidative protein folding. This process can be error-prone in its early stages, and any incorrect disulfides that form must be rearranged to their native configuration. When the second cysteine (CGHC) in the PDI active site is mutated to Ser, the isomerase activity drops by 7-8-fold, and a covalent intermediate with the substrate accumulates. This led to the proposal that the second active site cysteine provides an escape mechanism, preventing PDI from becoming trapped with substrates that isomerize slowly (Walker, K. W., and Gilbert, H. F. (1997) J. Biol. Chem. 272, 8845-8848). Escape also reduces the substrate, and if it is invoked frequently, disulfide isomerization will involve cycles of reduction and reoxidation in preference to intramolecular isomerization of the PDI-bound substrate. Using a gel-shift assay that adds a polyethylene glycol-conjugated maleimide of 5 kDa for each sulfhydryl group, we find that PDI reduction and oxidation are kinetically competent and essential for isomerization. Oxidants inhibit isomerization and oxidize PDI when a redox buffer is not present to maintain the PDI redox state. Reductants also inhibit isomerization as they deplete oxidized PDI. These rapid cycles of PDI oxidation and reduction suggest that PDI catalyzes isomerization by trial and error, reducing disulfides and oxidizing them in a different configuration. Disulfide reduction-reoxidation may set up critical folding intermediates for intramolecular isomerization, or it may serve as the only isomerization mechanism. In the absence of a redox buffer, these steady-state reduction-oxidation cycles can balance the redox state of PDI and support effective catalysis of disulfide isomerization.  相似文献   
94.
The one pot reactions carried among salicylaldehyde 1, ortho-aminophenols 2a-2g, and di-phenyl-tin(IV) oxide 3 led to seven di-phenyl-tin(IV) compounds 4a-4g in good yields (97-83%). All compounds were analyzed by IR, 1H, 13C, 119Sn NMR spectroscopy, mass spectrometry and elemental analyses; furthermore, in the case of compounds 4b, 4c, 4e and 4g by X-ray diffraction. Compounds 4a-4g were tested in vitro against six human tumor cell lines U251, PC-3, K-562, HCT-15, MCF-7 and SKLU-1 to assess their in vitro antitumor activity. The results suggest biological specificity towards U251, MCF-7 and SKLU-1 cells at doses below 2.5 microM, which are lower than cis-platin IC50's in the three cell lines. Since the inhibitory concentration values for the series were alike to Ph(2)SnCl(2) is feasible that only the Ph(2)Sn moiety is responsible for those activities, further experiments are under research. Besides, 4a-4g were tested for their antioxidant efficiency in rat brain homogenate showing that 4g is more active (IC50=3.01 microM) than the flavone quercetin (natural antioxidant, IC50=4.11 microM) on inhibition of thiobarbituric acid reactive substances (TBARS). The TBARS activity (IC50) correlates with the ortho-aminophenol substitutions and a linear combination among sigma Hammett, one bond tin coupling constants and tin chemical shifts against the measured IC(50-TBARS) was found. This correlation gave basis that the implied molecular variables can become trackers for the calculation of TBARS inhibitory concentrations in similar systems. Moreover, there seemed to be an inverse structure-response behavior among activities, since the 4g derivative is the less active compound for cytotoxic assays meanwhile it is the best in antioxidant tests.  相似文献   
95.
Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not initiated by brain mononuclear cells. Purkinje cell death was not simply due to intraneuronal antibody accumulation.  相似文献   
96.
A pure culture of an obligately anaerobic marine bacterium was obtained from an anaerobic enrichment culture in which taurine (2-aminoethanesulfonate) was the sole source of carbon, energy, and nitrogen. Taurine fermentation resulted in acetate, ammonia, and sulfide as end products. Other sulfonates, including 2-hydroxyethanesulfonate (isethionate) and cysteate (alanine-3-sulfonate), were not fermented. When malate was the sole source of carbon and energy, the bacterium reduced sulfate, sulfite, thiosulfate, or nitrate (reduced to ammonia) but did not use fumarate or dimethyl sulfoxide as a terminal electron acceptor for growth. Taurine-grown cells had significantly lower adenylylphosphosulfate reductase activities than sulfate-grown cells had, which was consistent with the notion that sulfate was not released as a result of oxidative C-S bond cleavage and then assimilated. The name Desulforhopalus singaporensis is proposed for this sulfate-reducing bacterium, which is morphologically unusual compared to the previously described sulfate-reducing bacteria by virtue of the spinae present on the rod-shaped, gram-negative, nonmotile cells; endospore formation was not discerned, nor was desulfoviridin detected. Granules of poly-β-hydroxybutyrate were abundant in taurine-grown cells. This organism shares with the other member of the genus Desulforhopalus which has been described a unique 13-base deletion in the 16S ribosomal DNA. It differs in several ways from a recently described endospore-forming anaerobe (K. Denger, H. Laue, and A. M. Cook, Arch. Microbiol. 168:297–301, 1997) that reportedly produces thiosulfate but not sulfide from taurine fermentation. D. singaporensis thus appears to be the first example of an organism which exhibits sulfidogenesis during taurine fermentation. Implications for sulfonate sulfur in the sulfur cycle are discussed.  相似文献   
97.
98.
99.
100.
W T Choe  C L Hatem  G A Clawson 《Life sciences》1991,48(16):1585-1589
Previous work has shown that hypomethylation of rRNA is an important control for protein synthesis in rat hepatocytes, and that the net hypomethylation appears to arise from cytoplasmic events. Here we show that demethylation of rRNA is catalyzed by microsomal preparations. The rRNA demethylation is dependent upon NADPH and is almost completely inhibited by carbon monoxide. Demethylation appears to increase following galactosamine intoxication, a hepatotoxin which induces hypomethylation of rRNA and inhibition of protein synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号