首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2291篇
  免费   172篇
  2023年   11篇
  2022年   15篇
  2021年   23篇
  2020年   12篇
  2019年   27篇
  2018年   36篇
  2017年   25篇
  2016年   60篇
  2015年   86篇
  2014年   91篇
  2013年   142篇
  2012年   173篇
  2011年   170篇
  2010年   114篇
  2009年   96篇
  2008年   141篇
  2007年   135篇
  2006年   128篇
  2005年   101篇
  2004年   117篇
  2003年   99篇
  2002年   100篇
  2001年   16篇
  2000年   23篇
  1999年   39篇
  1998年   33篇
  1997年   18篇
  1996年   29篇
  1995年   21篇
  1994年   25篇
  1993年   13篇
  1992年   22篇
  1991年   16篇
  1990年   18篇
  1988年   12篇
  1987年   16篇
  1986年   16篇
  1985年   18篇
  1984年   13篇
  1983年   13篇
  1982年   20篇
  1981年   20篇
  1980年   11篇
  1979年   10篇
  1977年   8篇
  1976年   9篇
  1973年   8篇
  1856年   11篇
  1854年   9篇
  1853年   7篇
排序方式: 共有2463条查询结果,搜索用时 31 毫秒
121.
B-type natriuretic peptide (BNP) has been reported to be released from the myocardium during ischemia. We hypothesized that BNP mediates cardioprotection during ischemia-reperfusion and examined whether exogenous BNP limits myocardial infarction and the potential role of ATP-sensitive potassium (K(ATP)) channel opening. Langendorff-perfused rat hearts underwent 35 min of left coronary artery occlusion and 120 min of reperfusion. The control infarct-to-risk ratio was 44.8 +/- 4.4% (means +/- SE). BNP perfused 10 min before ischemia limited infarct size in a concentration-dependent manner, with maximal protection observed at 10(-8) M (infarct-to-risk ratio: 20.1 +/- 5.2%, P < 0.01 vs. control), associated with a 2.5-fold elevation of myocardial cGMP above the control value. To examine the role of K(ATP) channel opening, glibenclamide (10(-6) M), 5-hydroxydecanoate (5-HD; 10(-4) M), or HMR-1098 (10(-5) M) was coperfused with BNP (10(-8) M). Protection afforded by BNP was abolished by glibenclamide or 5-HD but not by HMR-1098, suggesting the involvement of putative mitochondrial but not sarcolemmal K(ATP) channel opening. We conclude that natriuretic peptide/cGMP/K(ATP) channel signaling may constitute an important injury-limiting mechanism in myocardium.  相似文献   
122.
Nitric oxide (NO) is involved in the control of myocardial metabolism. In normoperfused myocardium, NO synthase inhibition shifts myocardial metabolism from free fatty acid (FFA) toward carbohydrate utilization. Ischemic myocardium is characterized by a similar shift toward preferential carbohydrate utilization, although NO synthesis is increased. The importance of NO for myocardial metabolism during ischemia has not been analyzed in detail. We therefore assessed the influence of NO synthase inhibition with N(G)-nitro-l-arginine (l-NNA) on myocardial metabolism during moderate ischemia in anesthetized pigs. In control animals, the increase in left ventricular pressure with l-NNA was mimicked by aortic constriction. Before ischemia, l-NNA decreased myocardial FFA consumption (MV(FFA); P < 0.05), while consumption of carbohydrate and O(2) (MVo(2)) remained constant. ATP equivalents [calculated with the assumption of complete oxidative substrate decomposition (ATP(eq))] decreased with l-NNA (P < 0.05), associated with a decrease of regional myocardial function (P < 0.05). In contrast, aortic constriction had no effect on MV(FFA), while MVo(2) increased (P < 0.05) and ATP(eq) and regional myocardial function remained constant. During ischemia, alterations in myocardial metabolism were similar in control and l-NNA-treated animals: MV(FFA) decreased (P < 0.05) and net lactate consumption was reversed to net lactate production (P < 0.05). Regional myocardial function was decreased (P < 0.05), although more markedly in animals receiving l-NNA (P < 0.05). We conclude that the efficiency of oxidative metabolism was impaired by l-NNA per se, paralleled by impaired regional myocardial function. During ischemia, l-NNA had no effect on myocardial substrate consumption, indicating that NO synthases were no longer effectively involved in the control of myocardial metabolism.  相似文献   
123.
In Saccharomyces cerevisiae Fat1p and fatty acyl-CoA synthetase (FACS) are hypothesized to couple import and activation of exogenous fatty acids by a process called vectorial acylation. Molecular genetic and biochemical studies were used to define further the functional and physical interactions between these proteins. Multicopy extragenic suppressors were selected in strains carrying deletions in FAA1 and FAA4 or FAA1 and FAT1. Each strain is unable to grow under synthetic lethal conditions when exogenous long-chain fatty acids are required, and neither strain accumulates the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) indicating a fatty acid transport defect. By using these phenotypes as selective screens, plasmids were identified encoding FAA1, FAT1, and FAA4 in the faa1Delta faa4Delta strain and encoding FAA1 and FAT1 in the faa1Delta fat1Delta strain. Multicopy FAA4 could not suppress the growth defect in the faa1Delta fat1Delta strain indicating some essential functions of Fat1p cannot be performed by Faa4p. Chromosomally encoded FAA1 and FAT1 are not able to suppress the growth deficiencies of the fat1Delta faa1Delta and faa1Delta faa4Delta strains, respectively, indicating Faa1p and Fat1p play distinct roles in the fatty acid import process. When expressed from a 2-mu plasmid, Fat1p contributes significant oleoyl-CoA synthetase activity, which indicates vectorial esterification and metabolic trapping are the driving forces behind import. Evidence of a physical interaction between Fat1p and FACS was provided using three independent biochemical approaches. First, a C-terminal peptide of Fat1p deficient in fatty acid transport exerted a dominant negative effect against long-chain acyl-CoA synthetase activity. Second, protein fusions employing Faa1p as bait and portions of Fat1p as trap were active when tested using the yeast two-hybrid system. Third, co-expressed, differentially tagged Fat1p and Faa1p or Faa4p were co-immunoprecipitated. Collectively, these data support the hypothesis that fatty acid import by vectorial acylation in yeast requires a multiprotein complex, which consists of Fat1p and Faa1p or Faa4p.  相似文献   
124.
125.
Misfolded secretory proteins are retained in the endoplasmic reticulum (ER) by quality control mechanisms targeted to exposed hydrophobic surfaces. Paradoxically, certain conotoxins expose extensive hydrophobic surfaces upon folding to their bioactive structures. How then can such secreted mini-proteins traverse the secretory pathway? Here we show that secretion of the hydrophobic conotoxin-TxVI is strongly dependent on its propeptide domain, which enhances TxVI export from the ER. The propeptide domain interacts with sorting receptors from the sortilin Vps10p domain family. The sortilin-TxVI interaction occurs in the ER, and sortilin facilitates export of TxVI from the ER to the Golgi. Thus, the prodomain in a secreted hydrophobic protein acts as a tag that can facilitate its ER export by a hitchhiking mechanism.  相似文献   
126.
The Ca(2+)-binding S100A1 protein displays a specific and high expression level in the human myocardium and is considered to be an important regulator of heart contractility. Diminished protein levels detected in dilated cardiomyopathy possibly contribute to impaired Ca(2+) handling and contractility in heart failure. To elucidate the S100A1 signaling pathway in the human heart, we searched for S100A1 target proteins by applying S100A1-specific affinity chromatography and immunoprecipitation techniques. We detected the formation of a Ca(2+)-dependent complex of S100A1 with SERCA2a and PLB in the human myocardium. Using confocal laser scanning microscopy, we showed that all three proteins co-localize at the level of the SR in primary mouse cardiomyocytes and confirmed these results by immunoelectron microscopy in human biopsies. Our results support a regulatory role of S100A1 in the contraction-relaxation cycle in the human heart.  相似文献   
127.
12-Hydroxyjasmonate, also known as tuberonic acid, was first isolated from Solanum tuberosum and was shown to have tuber-inducing properties. It is derived from the ubiquitously occurring jasmonic acid, an important signaling molecule mediating diverse developmental processes and plant defense responses. We report here that the gene AtST2a from Arabidopsis thaliana encodes a hydroxyjasmonate sulfotransferase. The recombinant AtST2a protein was found to exhibit strict specificity for 11- and 12-hydroxyjasmonate with K(m) values of 50 and 10 microm, respectively. Furthermore, 12-hydroxyjasmonate and its sulfonated derivative are shown to be naturally occurring in A. thaliana. The exogenous application of methyljasmonate to A. thaliana plants led to increased levels of both metabolites, whereas treatment with 12-hydroxyjasmonate led to increased level of 12-hydroxyjasmonate sulfate without affecting the endogenous level of jasmonic acid. AtST2a expression was found to be induced following treatment with methyljasmonate and 12-hydroxyjasmonate. In contrast, the expression of the methyljasmonate-responsive gene Thi2.1, a marker gene in plant defense responses, is not induced upon treatment with 12-hydroxyjasmonate indicating the existence of independent signaling pathways responding to jasmonic acid and 12-hydroxyjasmonic acid. Taken together, the results suggest that the hydroxylation and sulfonation reactions might be components of a pathway that inactivates excess jasmonic acid in plants. Alternatively, the function of AtST2a might be to control the biological activity of 12-hydroxyjasmonic acid.  相似文献   
128.
LaPSvS1, a highly sulfated branched (1-->3)-beta-galactan was prepared from the arabino-galactan from Larix decidua Miller by partial hydrolysis and subsequent sulfation with SO(3)-pyridine in DMF. The molecular weight was analyzed by GPC and the sulfate content was determined by ion chromatography. LaPSvS1 exhibited good antiangiogenic and antiinflammatory effects in two different modifications of the known CAM-assay. In vitro results obtained in the FGF-2-trypsin-assay and in fluorospectrometric experiments revealed that LaPSvS1 interacts with the fibroblast growth factor 2 system. This interaction is correlated with the in vivo effect of LaPSvS1 on FGF-2 induced angiogenesis.  相似文献   
129.
Abstract.— Cell-lineage trees may contain information about spiralian phylogeny, as proposed by Guralnick and Lind-berg (2001). Here we discuss this possibility further and conclude that the cell-division pattern must be known in greater detail and the coding methods refined before a possible phylogenetic signal can be identified.  相似文献   
130.
Yding Andersen C  Byskov AG 《Steroids》2002,67(12):941-945
Some intermediates in the cholesterol biosynthesis between lanosterol and cholesterol are capable of inducing resumption of meiosis in cultured mouse oocytes without the presence of gonadotropins. The mechanism by which these so-called Meiosis Activating Sterols (MAS) activate the meiotic process is unknown, and it is uncertain whether they participate in the physiological control of resumption of meiosis. Recently, it has been shown that accumulation of MAS occurs in a liver cell line and in rat testis tissue cultured in the presence of micromolar concentrations of progesterone and 17 alpha-OH-progesterone. Such high concentrations of progesterone and 17 alpha-OH-progesterone only occur in fluid of preovulatory follicles. In connection with the mid-cycle surge of gonadotropins, this may represent one mechanism whereby follicular accumulation of MAS takes place. In the present study, the effect of 10 micro M progesterone and 10 micro M 17 alpha-OH-progesterone on resumption of meiosis was evaluated using mouse cumulus enclosed oocytes (CEO) cultured in the presence of 4mM hypoxanthine. By the end of the 24-h culture period, the frequency by which oocytes had resumed meiosis was assessed by the determination of germinal vesicle breakdown (GVBD). Neither progesterone nor 17 alpha-OH-progesterone or a combination showed any effect on GVBD. In addition, progesterone and 17 alpha-OH-progesterone in combination with a sub-optimal dose of FSH (4 IU/l) did not affect GVBD. In conclusion, accumulation of MAS to an extent that allows resumption of meiosis to occur in CEO is unlikely to be induced by progesterone and 17 alpha-OH-progesterone or a combination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号