首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5889篇
  免费   466篇
  2023年   42篇
  2022年   62篇
  2021年   179篇
  2020年   93篇
  2019年   128篇
  2018年   150篇
  2017年   124篇
  2016年   197篇
  2015年   319篇
  2014年   351篇
  2013年   407篇
  2012年   601篇
  2011年   525篇
  2010年   322篇
  2009年   271篇
  2008年   386篇
  2007年   361篇
  2006年   286篇
  2005年   250篇
  2004年   223篇
  2003年   204篇
  2002年   180篇
  2001年   35篇
  2000年   32篇
  1999年   52篇
  1998年   50篇
  1997年   27篇
  1996年   34篇
  1995年   26篇
  1994年   28篇
  1993年   20篇
  1992年   31篇
  1991年   21篇
  1990年   19篇
  1989年   8篇
  1988年   13篇
  1987年   23篇
  1986年   18篇
  1985年   19篇
  1984年   16篇
  1983年   18篇
  1982年   20篇
  1981年   23篇
  1980年   11篇
  1979年   13篇
  1977年   13篇
  1976年   11篇
  1974年   8篇
  1973年   9篇
  1968年   8篇
排序方式: 共有6355条查询结果,搜索用时 15 毫秒
151.
The mitochondrial amidoxime reducing component mARC is a recently discovered molybdenum enzyme in mammals. mARC is not active as a standalone protein, but together with the electron transport proteins NADH-cytochrome b5 reductase (CYB5R) and cytochrome b5 (CYB5), it catalyzes the reduction of N-hydroxylated compounds such as amidoximes. The mARC-containing enzyme system is therefore considered to be responsible for the activation of amidoxime prodrugs. All hitherto analyzed mammalian genomes code for two mARC genes (also referred to as MOSC1 and MOSC2), which share high sequence similarities. By RNAi experiments in two different human cell lines, we demonstrate for the first time that both mARC proteins are capable of reducing N-hydroxylated substrates in cell metabolism. The extent of involvement is highly dependent on the expression level of the particular mARC protein. Furthermore, the mitochondrial isoform of CYB5 (CYB5B) is clearly identified as an essential component of the mARC-containing N-reductase system in human cells. The participation of the microsomal isoform (CYB5A) in N-reduction could be excluded by siRNA-mediated down-regulation in HEK-293 cells and knock-out in mice. Using heme-free apo-CYB5, the contribution of mitochondrial CYB5 to N-reductive catalysis was proven to strictly depend on heme. Finally, we created recombinant CYB5B variants corresponding to four nonsynonymous single nucleotide polymorphisms (SNPs). Investigated mutations of the heme protein seemed to have no significant impact on N-reductive activity of the reconstituted enzyme system.  相似文献   
152.
CLC anion transporters form dimers that function either as Cl channels or as electrogenic Cl/H+ exchangers. CLC channels display two different types of “gates,” “protopore” gates that open and close the two pores of a CLC dimer independently of each other and common gates that act on both pores simultaneously. ClC-7/Ostm1 is a lysosomal 2Cl/1H+ exchanger that is slowly activated by depolarization. This gating process is drastically accelerated by many CLCN7 mutations underlying human osteopetrosis. Making use of some of these mutants, we now investigate whether slow voltage activation of plasma membrane-targeted ClC-7/Ostm1 involves protopore or common gates. Voltage activation of wild-type ClC-7 subunits was accelerated by co-expressing an excess of ClC-7 subunits carrying an accelerating mutation together with a point mutation rendering these subunits transport-deficient. Conversely, voltage activation of a fast ClC-7 mutant could be slowed by co-expressing an excess of a transport-deficient mutant. These effects did not depend on whether the accelerating mutation localized to the transmembrane part or to cytoplasmic cystathionine-β-synthase (CBS) domains of ClC-7. Combining accelerating mutations in the same subunit did not speed up gating further. No currents were observed when ClC-7 was truncated after the last intramembrane helix. Currents and slow gating were restored when the C terminus was co-expressed by itself or fused to the C terminus of the β-subunit Ostm1. We conclude that common gating underlies the slow voltage activation of ClC-7. It depends on the CBS domain-containing C terminus that does not require covalent binding to the membrane domain of ClC-7.  相似文献   
153.
Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.  相似文献   
154.
155.
The threat of punishment usually promotes cooperation. However, punishing itself is costly, rare in nonhuman animals, and humans who punish often finish with low payoffs in economic experiments. The evolution of punishment has therefore been unclear. Recent theoretical developments suggest that punishment has evolved in the context of reputation games. We tested this idea in a simple helping game with observers and with punishment and punishment reputation (experimentally controlling for other possible reputational effects). We show that punishers fully compensate their costs as they receive help more often. The more likely defection is punished within a group, the higher the level of within‐group cooperation. These beneficial effects perish if the punishment reputation is removed. We conclude that reputation is key to the evolution of punishment.  相似文献   
156.
Deformability while remaining viable is an important mechanical property of cells. Red blood cells (RBCs) deform considerably while flowing through small capillaries. The RBC membrane can withstand a finite strain, beyond which it ruptures. The classical yield areal strain of 2–4% for RBCs is generally accepted for a quasi-static strain. It has been noted previously that this threshold strain may be much larger with shorter exposure duration. Here we employ an impulse-like forcing to quantify this yield strain of RBC membranes. In the experiments, RBCs are stretched within tens of microseconds by a strong shear flow generated from a laser-induced cavitation bubble. The deformation of the cells in the strongly confined geometry is captured with a high-speed camera and viability is successively monitored with fluorescence microscopy. We find that the probability of cell survival is strongly dependent on the maximum strain. Above a critical areal strain of ∼40%, permanent membrane damage is observed for 50% of the cells. Interestingly, many of the cells do not rupture immediately and exhibit ghosting, but slowly obtain a round shape before they burst. This observation is explained with structural membrane damage leading to subnanometer-sized pores. The cells finally lyse from the colloidal osmotic pressure imbalance.  相似文献   
157.
158.
Organophosphate (OP) poisoning is still associated with high morbidity and mortality rates, both in resource-poor settings and in well-developed countries. Despite numerous publications dealing with this particular poison, detailed clinical data on more severe overdoses with these agents are relatively sparsely reported. A retrospective study was consequently conducted on 33 patients with OP poisoning admitted to our intensive care unit (ICU) to provide additional data on clinical features. We included moderate to severe poisonings between 2000 and 2012 who required admission to ICU.  相似文献   
159.
The Na+-coupled glucose transporter SGLT1 (SLC5A1) accomplishes concentrative cellular glucose uptake even at low extracellular glucose concentrations. The carrier is expressed in renal proximal tubules, small intestine and a variety of nonpolarized cells including several tumor cells. The present study explored whether SGLT1 activity is regulated by caveolin-1, which is known to regulate the insertion of several ion channels and carriers in the cell membrane. To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of caveolin-1 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes, but not in oocytes injected with water or caveolin-1 alone, the addition of glucose to the extracellular bath generated an inward current (Ig), which was increased following coexpression of caveolin-1. Kinetic analysis revealed that caveolin-1 increased maximal Ig without significantly modifying the glucose concentration required to trigger half maximal Ig (KM). According to chemiluminescence and confocal microscopy, caveolin-1 increased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of Ig, which was similar in the absence and presence of caveolin-1. In conclusion, caveolin-1 up-regulates SGLT1 activity by increasing carrier protein abundance in the cell membrane, an effect presumably due to stimulation of carrier protein insertion into the cell membrane.  相似文献   
160.
A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), using an ethylamino linker. The resulting rhodamine-labeled ligand 8 inhibited [3H]5-HT uptake in COS-7 cells (Ki = 225 nM) with similar potency to the tropane-based JHC 1-064 (1), but with higher specificity towards the SERT relative to the transporters for dopamine and norepinephrine. Visualization of the SERT with compound 8 was demonstrated by confocal microscopy in HEK293 cells stably expressing EGFP–SERT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号