首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   61篇
  国内免费   1篇
  930篇
  2023年   3篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   4篇
  2018年   12篇
  2017年   10篇
  2016年   18篇
  2015年   23篇
  2014年   34篇
  2013年   40篇
  2012年   40篇
  2011年   43篇
  2010年   42篇
  2009年   35篇
  2008年   55篇
  2007年   63篇
  2006年   50篇
  2005年   60篇
  2004年   60篇
  2003年   58篇
  2002年   31篇
  2001年   9篇
  2000年   8篇
  1999年   9篇
  1998年   12篇
  1997年   9篇
  1996年   7篇
  1995年   8篇
  1994年   13篇
  1993年   15篇
  1992年   15篇
  1991年   9篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   12篇
  1984年   8篇
  1983年   4篇
  1982年   7篇
  1981年   7篇
  1980年   7篇
  1979年   2篇
  1978年   10篇
  1977年   8篇
  1976年   3篇
  1974年   2篇
  1972年   4篇
排序方式: 共有930条查询结果,搜索用时 15 毫秒
101.
Methoxypyrazines (MPs) are strongly odorant volatile molecules with vegetable-like fragrances that are widespread in plants. Some grapevine (Vitis vinifera) varieties accumulate significant amounts of MPs, including 2-methoxy-3-isobutylpyrazine (IBMP), which is the major MP in grape berries. MPs are of particular importance in white Sauvignon Blanc wines. The typicality of these wines relies on a fine balance between the pea pod, capsicum character of MPs and the passion fruit/grapefruit character due to volatile thiols. Although MPs play a crucial role in Sauvignon varietal aromas, excessive concentrations of these powerful odorants alter wine quality and reduce consumer acceptance, particularly in red wines. The last step of IBMP biosynthesis has been proposed to involve the methoxylation of the nonvolatile precursor 2-hydroxy-3-isobutylpyrazine to give rise to the highly volatile IBMP. In this work, we have used a quantitative trait loci approach to investigate the genetic bases of IBMP biosynthesis. This has led to the identification of two previously uncharacterized S-adenosyl-methionine-dependent O-methyltransferase genes, termed VvOMT3 and VvOMT4. Functional characterization of these two O-methyltransferases showed that the VvOMT3 protein was highly specific and efficient for 2-hydroxy-3-isobutylpyrazine methylation. Based on its differential expression in high- and low-MP-producing grapevine varieties, we propose that VvOMT3 is a key gene for IBMP biosynthesis in grapevine.The pleasure experienced while enjoying a glass of wine is the result of sophisticated sensory, neurophysiological, and psychological processes triggered by wine aroma. Wine flavor is the result of a complex mixture of volatile compounds in the headspace of the glass that induces feelings of pleasure at the brain level (Shepherd, 2006). During the last 40 years, over 800 volatile molecules have been formally identified in wines, in concentrations ranging from hundreds of milligrams per liter down to a few picograms per liter (Ebeler and Thorngate, 2009; Styger et al., 2011). Among all of them, a relatively limited number of compounds, called varietal (or primary) aromas, play a crucial role in wine flavor and typicality. These aromas, which are related to the grape variety, belong to a limited number of chemical families, including monoterpenes, C13 norisoprenoids, volatile sulfur compounds, and methoxypyrazines (MPs; Ebeler and Thorngate, 2009). Quite frequently, they exist mostly in the grape (Vitis vinifera) berry as nonvolatile, odorless, “bound” forms that can be released by chemical and enzymatic reactions occurring during the winemaking and wine aging processes, thus enhancing wine’s varietal expression (Styger et al., 2011). Two classical examples are the glycoside precursors of the monoterpenols (Strauss et al., 1986) and the cysteinylated or glutathionylated precursors of the volatile thiols (Tominaga et al., 1998; Peña-Gallego et al., 2012). Noticeable exceptions are the MPs, which are found in grape berries exclusively as free, volatile molecules.MPs are strongly odorant volatile heterocycles, with vegetable-like fragrances, that are widely occurring in the plant kingdom (Maga, 1982). In grape, they can be detected in fruits, leaves, shoots, and roots (Dunlevy et al., 2010). They are found in different grape varieties and are particularly abundant in the so-called Bordeaux cultivars (i.e. cv Cabernet Franc, Cabernet Sauvignon [CS], Sauvignon Blanc, Merlot, and Carménère [Car]; Bayonove et al., 1975; Lacey et al., 1991; Roujou de Boubée et al., 2002; Belancic and Agosin, 2007), whereas they are rarely detected in other cultivars, such as cv Pinot Noir (PN), Chardonnay, or Petit Verdot (PV). This finding indicates a strong genotype dependency of MP biosynthesis (Koch et al., 2010). MPs are accumulated in berries until bunch closure or véraison, and then their level declines after véraison (Hashizume and Samuta, 1999; Ryona et al., 2008). MP concentration in wine is highly correlated with the grape berry content at harvest (Roujou de Boubée et al., 2002). Three MPs are found in grape berries: 2-methoxy-3-isobutylpyrazine (IBMP), which is the most abundant, and two others, 2-methoxy-3-isopropylpyrazine (IPMP) and 2-methoxy-3-sec-butylpyrazine (SBMP; Ebeler and Thorngate, 2009). Both IBMP and IPMP display very low sensory detection thresholds in the wine matrix, ranging from 1 to 16 ng L–1.MPs are of particular importance in white Sauvignon Blanc wines. The typicality of these wines relies on a fine balance between the pea pod, capsicum character of MPs and the passion fruit/grapefruit character due to volatile thiols (Dubourdieu et al., 2006; Lund et al., 2009). Although MPs play a crucial role in Sauvignon varietal aromas, excessive concentrations of these extremely powerful odorants will reduce consumer acceptance (Parr et al., 2007). In red wine, MPs are considered as off-flavor, and red wines can be depreciated by concentrations above 10 ng L–1 (Allen et al., 1991; Roujou de Boubée et al., 2000; Belancic and Agosin, 2007). Given the importance of MPs, either as typical varietal aromas or as detrimental off-flavors, deciphering the genetic and molecular determinism of their accumulation is of high interest for viticulture.In spite of this, until recently little was known about the MP biosynthesis pathway or the MP biosynthetic genes, either in grapevine or other plant species. Theoretical biosynthesis pathways have been proposed since the mid-1970s. They all start by the addition of an α-dicarbonyl on a branched amino acid (Leu for IBMP, Val for IPMP) to form a 2-hydroxy-3-alkylpyrazine, which is subsequently transformed into the corresponding MP, by a methoxylation reaction (Murray and Whitfield 1975; Gallois et al., 1988). While the initial addition step remains to be demonstrated in plants, an S-adenosyl-l-Met (SAM)-dependent O-methyltransferase (OMT), capable of converting 2-hydroxy-3-isobutylpyrazine (IBHP) into IBMP, has been detected in CS shoots, partially purified and sequenced (Hashizume et al., 2001a, 2001b; Fig. 1). Recently, Dunlevy et al. (2010) characterized two OMTs, VvOMT1 and VvOMT2, capable of methylating IBHP in vitro, albeit with high apparent Km values. To investigate the genetic bases of MP biosynthesis in grape berries, we performed a quantitative trait loci (QTL) analysis, which has led to the identification of two previously uncharacterized OMTs termed VvOMT3 and VvOMT4. Functional characterization of these two OMTs showed that VvOMT3 was highly specific and efficient for IBHP methylation. Based on its differential expression in high-MP and low-MP grapevine varieties, we propose that VvOMT3 and, to a lesser extent, VvOMT4 are key genes for MP biosynthesis in grapevine berries.Open in a separate windowFigure 1.Putative biosynthesis pathway for IBMP adapted from Hashizume et al. (2001a). SAHcy, S-Adenosyl-l-homo-Cys.  相似文献   
102.
103.
Follistatin was first demonstrated as an activin-binding protein, neutralizing its actions. However, there is emerging evidence that follistatin inhibits the action of other members of the transforming growth factor beta(TGFbeta) / bone morphogenetic protein (BMP) superfamily. Recently, numerous BMP factors have been shown to play important roles in regulating folliculogenesis and ovulation rate in mammals, and such a potential antagonistic role of follistatin is of particular interest in the context of ovarian function. Using a biological test based on progesterone production by ovine primary granulosa cells in culture, we show that follistatin was a strong antagonist of activin A, but not BMP-2 or BMP-4 actions. In contrast, noggin, a known specific BMP antagonist, had no effect on activin A but strongly neutralized BMP-2 and BMP-4 actions. BMP-6 action was only slightly reduced by both follistatin and noggin. Our data led to the conclusion that follistatin would not represent a determinant physiological modulator of the biological effect of BMP factors on granulosa cells.  相似文献   
104.
105.
In the livers of humans and many other mammalian species, beta2-adrenergic receptors (beta2-ARs) play an important role in the modulation of glucose production by glycogenolysis and gluconeogenesis. In male mice and rats, however, the expression and physiological role of hepatic beta2-ARs are rapidly lost with development under normal physiological conditions. We previously described a line of transgenic mice, F28 (Andre C, Erraji L, Gaston J, Grimber G, Briand P, and Guillet JG. Eur J Biochem 241: 417-424, 1996), which carry the human beta2-AR gene under the control of its own promoter. In these mice, hepatic beta2-AR levels are shown to increase rapidly after birth and, as in humans, be maintained at an elevated level in adulthood. F28 mice display strongly enhanced adenylyl cyclase responses to beta-AR agonists in their livers and, compared with normal mice, have increased basal hepatic adenylyl cyclase activity. In this report we demonstrate that, under normal physiological conditions, this increased beta2-AR activity affects the expression of the gluconeogenic and glycolytic key enzymes phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and l-pyruvate kinase and considerably decreases hepatic glycogen levels. Furthermore, we show that the effects of beta-adrenergic ligands on liver glycogen observed in humans are reproduced in these mice: liver glycogen levels are strongly decreased by the beta2-AR agonist clenbuterol and increased by the beta-AR antagonist propranolol. These transgenic mice open new perspectives for studying in vivo the hepatic beta2-AR system physiopathology and for testing the effects of beta-AR ligands on liver metabolism.  相似文献   
106.
In Mycoplasma pneumoniae, the UGA opal codon specifies tryptophan rather than a translation stop site. This often makes it difficult to express Mycoplasma proteins in E. coli isolates. In this work, we developed a strategy for the one-step introduction of several mutations. This method, the multiple-mutation reaction, is used to simultaneously replace nine opal codons in the M. pneumoniae glpK gene.  相似文献   
107.
BAG-1 is a multi-functional protein that exists in three major isoforms, BAG-1 p50, p46, and p36. A fourth isoform of 29 kDa also exists but its function remains mostly unknown. To further understand the role of this smaller isoform in ovarian cancer cells, the SKOV3 cell line was transfected with a doxycycline-inducible human BAG-1 p29 isoform or control plasmid. Ovexpression of BAG-1 p29 promotes protection from apoptosis in the presence of EGF as shown by decreased cell death measured by XTT assay and caspase-3 activity. Unexpectedly, however, BAG-1 p29 does not associate with the EGF receptor. When BAG-1 p29 transfectants were incubated in hydrogel-coated plates, BAG-1 p29-expressing SKOV3 cells were significantly more resistant to anoikis as compared to controls, and this correlated with decreased activation of caspase-3. The results of this study implicate BAG-1 p29 in the regulation of both the EGF signaling cascade and the apoptotic cascade induced by loss of anchorage.  相似文献   
108.
109.
Steatosis encompasses the accumulation of droplets of fats into hepatocytes. In this work, we performed a comparative analysis of mitochondrial protein patterns found in wild-type and steatosis-affected liver using the novel technique two-dimensional differential in-gel electrophoresis (2D-DIGE). A total of 56 proteins exhibiting significant difference in their abundances were unambiguously identified. Interestingly, major proteins that regulate generation and consumption of the acetyl-CoA pool were dramatically changed during steatosis. Many proteins involved in the response to oxidative stress were also affected.  相似文献   
110.
ADPglucose, the essential substrate for starch synthesis, is synthesized in maize by a pathway involving at least invertases, sucrose synthase, and ADPglucose pyrophosphorylase, as shown by the starch-deficient mutants, mn1, sh1, and bt2 or sh2, respectively. To improve understanding of the relationship between early grain-filling traits and carbohydrate composition in mature grain, QTLs linked to soluble invertase, sucrose synthase, and ADPglucose pyrophosphorylase activities and to starch, sucrose, fructose, and glucose concentrations were investigated. In order to take into account the specific time-course of each enzyme activity during grain filling, sampling was carried out at three periods (15, 25, and 35 d after pollination) on 100 lines from a recombinant inbred family, grown in the field. The MQTL method associated with QTL interaction analysis revealed numerous QTLs for all traits, but only one QTL was consistently observed at the three sampling periods. Some chromosome zones were heavily labelled, forming clusters of QTLs. Numerous possible candidate genes of the starch synthetic pathway co-located with QTLs. Four QTLs were found close to the locus Sh1 (bin 9.01) coding for the sucrose synthase. In order to confirm the importance of this locus, the CAPS polymorphism of the Sh1 gene was analysed in 45 genetically unrelated maize lines from various geographical origins. The DNA polymorphism was significantly associated with phenotypic traits related to grain filling (starch and amylose content, grain matter, and ADPglucose pyrophosphorylase activity at 35 DAP). Thus, the Sh1 locus could provide a physiologically pertinent marker for maize selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号