首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   5篇
  156篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   13篇
  2008年   7篇
  2007年   9篇
  2006年   16篇
  2005年   7篇
  2004年   3篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1988年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1981年   3篇
  1979年   1篇
  1975年   2篇
排序方式: 共有156条查询结果,搜索用时 0 毫秒
101.
102.
Summary The effect of Adriamycin (ADM) on eryhtroleukaemia K 562 cell susceptibility to human natural killer (NK) cell activity has been studied. When cultivated for 3 days in the presence of 10 to 40 nM ADM, K 562 cells decreased their susceptibility to NK-mediated lysis in a dose-dependent fashion. At a concentration of 40 nM, previously found to induce optimal differentiation-associated properties in K 562 cells, the induced resistance to NK-mediated lysis increased progressively from day 1 to day 3 of culture. ADM treatment did not induce K 562 cells to release factors which interfered with NK activity since supernatants from ADM-treated K 562 cell cultures caused no significant modification in the NK lytic process. Binding to NK of ADM-treated K 562 cells was unaffected since treated and untreated cells had identical capacities in a conjugate-forming cell assay or adsorption of NK cells on target cell monolayers. In cold target competition assays ADM-treated K 562 cells acted as more effective competitors than untreated K 562 cells. These observations imply that the reduced killing of the ADM-treated K 562 cells was independent of target-NK cell recognition, and suggest that ADM treatment could allow malignant cells to escape NK surveillance.  相似文献   
103.
The aim of our work is to show the importance of the role of hydrophobic bonds in maintaining Mg2+-ATPase or sucrase activity and Na+-coupled d-glucose uptake normal for the brush border of rat enterocytes. The activity of the two enzymes and the d-glucose uptake were therefore measured under the action of n-aliphatic alcohols and related to the fluidity determined by ESR. Three concentrations were used for the first eight alcohols, those of octanol being about 1500-times lower than those of methanol. For each alcohol the d-glucose uptake and the fluidity were linear functions of the logarithm of the concentration, the linear regressions being practically parallel and equidistant. The concentrations (C) of the eight alcohols inhibiting the d-glucose uptake by 80% were similar to those increasing the membrane fluidity by 3%. The linear relationship which existed in both cases between log 1 / C and log P, P being octanol / water partition coefficients of the alcohols, was evidence of great sensitivity to the hydrophobic effect of the alcohols. Only the first alcohols, however, produced any notable inhibition of Mg2+-ATPase and sucrase. Hydrophobic bonds are thus shown to have little influence in maintaining the activity of Mg2+-ATPase and sucrase, but they modulate the Na+-coupled d-glucose uptake.  相似文献   
104.
Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest-related disorders.  相似文献   
105.
ABSTRACT Guadeloupe Woodpeckers (Melanerpes herminieri) are the only endemic bird species on the Caribbean island of Guadeloupe. These woodpeckers were classified as Near Threatened on the IUCN Red List following a population survey in 1994. To reassess the Guadeloupe Woodpecker population, we conducted a new survey in 2007, with 21 transects distributed across eight habitats known to be used by the woodpeckers. Habitats with the highest estimated population densities were seasonal evergreen secondary growth forest, followed by swamp forest and rainforest. Surveys revealed an estimated population of 8469 pairs in 2007 compared to 7368 pairs in 1994, a difference that was not significant. However, our 2007 survey revealed that Guadeloupe Woodpeckers had recolonized the last large patch of available forest on Basse‐Terre, one of the two main islands in the Guadeloupe archipelago. Although our results suggest that the Guadeloupe Woodpecker population has remained relatively stable since 1994, deforestation remains a serious threat and we recommend that the IUCN Red List status of Near Threatened be retained. Management measures that would benefit Guadeloupe Woodpeckers include halting deforestation and providing financial support to people on private land to plant trees and leave dead trees standing. Regular monitoring will be important for determining the possible effects of such measures on the Guadeloupe Woodpecker population.  相似文献   
106.
The subsection Asperae of genus Hydrangea L. (Hydrangeaceae) has been investigated for three reasons: several ambiguous classifications concerning Hydrangea aspera have been published, unexpected differences in genome size among seven accessions have been reported Cerbah et al. (Theor Appl Genet 103:45–51, 2001), and two atypical chromosome numbers (2n = 30 for Hydrangea involucrata and 2n = 34 for H. aspera) have been found when all other species of the genus present 2n = 36. Therefore, these two species and four subspecies of Hydrangea in all 29 accessions were analyzed for their genome size, chromosome number, and karyotype features. This investigation includes flow cytometric measurements of nuclear DNA content and bases composition (GC%), fluorochrome banding for detection of GC- and AT-rich DNA regions, and fluorescent in situ hybridisation (FISH) for chromosome mapping of 5 S and 18 S-5.8 S-26 S rDNA genes. In the H. aspera complex, the genome size ranged from 2.98 (subsp. sargentiana) to 4.67 pg/2C (subsp. aspera), an exceptional intraspecific variation of 1.57-fold. The mean base composition was 40.5% GC. Our report establishes the first karyotype for the species H. involucrata, and for the subspecies of H. aspera which indeed present different formulae, offering an element of discrimination. FISH and fluorochrome banding revealed the important differentiation between these two species (H. involucrata and H. aspera) and among four subspecies of the H. aspera complex. Our results are in agreement with the Chinese classification that places the groups Kawakami and Villosa as two different species: Hydrangea villosa Rehder and Hydrangea kawakami Hayata. This knowledge can contribute to effective germplasm management and horticultural use.  相似文献   
107.
The impact of feed supplementation with bambermycin, monensin, narasin, virginiamycin, chlortetracycline, penicillin, salinomycin, and bacitracin on the distribution of Escherichia coli pathotypes in broiler chickens was investigated using an E. coli virulence DNA microarray. Among 256 E. coli isolates examined, 59 (23%) were classified as potentially extraintestinal pathogenic E. coli (ExPEC), while 197 (77%) were considered commensal. Except for chlortetracycline treatment, the pathotype distribution was not significantly different among treatments (P > 0.05). Within the 59 ExPEC isolates, 44 (75%) were determined to be potentially avian pathogenic E. coli (APEC), with the remaining 15 (25%) considered potentially “other” ExPEC isolates. The distribution within phylogenetic groups showed that 52 (88%) of the ExPEC isolates belonged to groups B2 and D, with the majority of APEC isolates classified as group D and most commensal isolates (170, 86%) as group A or B1. Indirect assessment of the presence of the virulence plasmid pAPEC-O2-ColV showed a strong association of the plasmid with APEC isolates. Among the 256 isolates, 224 (88%) possessed at least one antimicrobial resistance gene, with nearly half (107, 42%) showing multiple resistance genes. The majority of resistance genes were distributed among commensal isolates. Considering that the simultaneous detection of antimicrobial resistance tet(A), sulI, and blaTEM genes and the integron class I indicated a potential presence of the resistance pAPEC-O2-R plasmid, the results revealed that 35 (14%) of the isolates, all commensals, possessed this multigene resistance plasmid. The virulence plasmid was never found in combination with the antimicrobial resistance plasmid. The presence of the ColV plasmid or the combination of iss and tsh genes in the majority of APEC isolates supports the notion that when found together, the plasmid, iss, and tsh serve as good markers for APEC. These data indicate that different resistant E. coli pathotypes can be found in broiler chickens and that the distribution of such pathotypes and certain virulence determinants could be modulated by antimicrobial agent feed supplementation.Several classes of antimicrobial agents, such as glycolipids (bambermycin), cyclic peptides (bacitracin), ionophores (monensin and salinomycin), streptogramins (virginiamycin), and β-lactams (penicillin), are widely used as food additives in modern animal husbandry to prevent infections and promote growth (6). Increasing antimicrobial resistance in animals and its potential threat to human health led to the ban of bacitracin, spiramycin, tylosin, and virginiamycin as feeding additives by the European Union in 1999 (7, 46). Although this precautionary measure is still controversial because of being seen as having a negligible impact on human health, negative consequences for animal health and welfare, including economic losses for farmers, were subsequently observed in Europe (7). In stark contrast, however, the ban has been beneficial in reducing the total quantity of antibiotics administered to food animals (7, 47). Under good production conditions and correct use of antibiotics, poultry production is reported to be competitive (14, 47, 48) and even beneficial in reducing antimicrobial resistance in important food animal reservoirs and thus the potential threat to public health (48).Escherichia coli is generally considered a commensal member of the normal gastrointestinal microflora in humans and animals, yet some strains are known to cause serious morbidity and mortality. The expression of various virulence factors, which affect cellular processes, can result in different clinical diseases, such as cystitis, pyelonephritis, sepsis/meningitis, and gastroenteritis. The possession of different virulence gene subsets can further define the E. coli pathotype (31). The extraintestinal pathogenic E. coli (ExPEC) strains are epidemiologically and phylogenetically distinct from both intestinal pathogenic and commensal strains (43). In North America, annually, several million cases of urinary tract infections, abdominal infections, pelvic infections, pneumonia, meningitis, and sepsis are caused by ExPEC (42). In poultry production, avian pathogenic E. coli (APEC) is responsible for significant economic losses. APEC strains induce extraintestinal diseases such as air sacculitis, colibacillosis, polysorositis, and septicemia in birds (9, 21, 22, 31, 35, 45). Although no specific set of virulence factors has been clearly linked to APEC strains, most identified virulence factors are similar to those frequently associated with ExPEC (36).Bearing in mind that the avian intestinal environment has been considered a reservoir of E. coli having zoonotic potential (15) and the possible contamination of poultry products with such bacteria during slaughter, the impact of antimicrobial feeding additives on the distribution and dissemination of bacterial pathotypes and antibiotic resistance needs to be explored to address human, animal, and environmental health concerns. To this end, an E. coli DNA virulence microarray previously employed to assess the genotypes (virulence and antibiotic resistance genes) of E. coli strains isolated from different environmental ecosystems and from the chicken intestinal tract (1, 10, 19, 20, 33) was used. The aim of the present trial was to investigate the distributions of pathotypes and of virulence and antibiotic resistance genes in E. coli isolates from broilers fed with antimicrobial supplementation diets including bambermycin, penicillin, salinomycin, bacitracin, chlortetracycline, virginiamycin, monensin, and narasin.  相似文献   
108.
109.
Human aging is associated with a progressive loss of muscle mass and strength and a concomitant fat accumulation in form of inter-muscular adipose tissue, causing skeletal muscle function decline and immobilization. Fat accumulation can also occur as intra-muscular triglycerides (IMTG) deposition in lipid droplets, which are associated with perilipin proteins, such as Perilipin2 (Plin2). It is not known whether Plin2 expression changes with age and if this has consequences on muscle mass and strength. We studied the expression of Plin2 in the vastus lateralis (VL) muscle of both healthy subjects and patients affected by lower limb mobility limitation of different age. We found that Plin2 expression increases with age, this phenomenon being particularly evident in patients. Moreover, Plin2 expression is inversely correlated with quadriceps strength and VL thickness. To investigate the molecular mechanisms underpinning this phenomenon, we focused on IGF-1/p53 network/signalling pathway, involved in muscle physiology. We found that Plin2 expression strongly correlates with increased p53 activation and reduced IGF-1 expression. To confirm these observations made on humans, we studied mice overexpressing muscle-specific IGF-1, which are protected from sarcopenia. These mice resulted almost negative for the expression of Plin2 and p53 at two years of age. We conclude that fat deposition within skeletal muscle in form of Plin2-coated lipid droplets increases with age and is associated with decreased muscle strength and thickness, likely through an IGF-1- and p53-dependent mechanism. The data also suggest that excessive intramuscular fat accumulation could be the initial trigger for p53 activation and consequent loss of muscle mass and strength.  相似文献   
110.

Background

Fibrosis, which is characterized by the pathological accumulation of collagen, is recognized as an important feature of many chronic diseases, and as such, constitutes an enormous health burden. We need non-invasive specific methods for the early diagnosis and follow-up of fibrosis in various disorders. Collagen targeting molecules are therefore of interest for potential in vivo imaging of fibrosis. In this study, we developed a collagen-specific probe using a new approach that takes advantage of the inherent specificity of Glycoprotein VI (GPVI), the main platelet receptor for collagens I and III.

Methodology/Principal Findings

An anti-GPVI antibody that neutralizes collagen-binding was used to screen a bacterial random peptide library. A cyclic motif was identified, and the corresponding peptide (designated collagelin) was synthesized. Solid-phase binding assays and histochemical analysis showed that collagelin specifically bound to collagen (Kd 10−7 M) in vitro, and labelled collagen fibers ex vivo on sections of rat aorta and rat tail. Collagelin is therefore a new specific probe for collagen. The suitability of collagelin as an in vivo probe was tested in a rat model of healed myocardial infarctions (MI). Injecting Tc-99m-labelled collagelin and scintigraphic imaging showed that uptake of the probe occurred in the cardiac area of rats with MI, but not in controls. Post mortem autoradiography and histological analysis of heart sections showed that the labeled areas coincided with fibrosis. Scintigraphic molecular imaging with collagelin provides high resolution, and good contrast between the fibrotic scars and healthy tissues. The capacity of collagelin to image fibrosis in vivo was confirmed in a mouse model of lung fibrosis.

Conclusion/Significance

Collagelin is a new collagen-targeting agent which may be useful for non-invasive detection of fibrosis in a broad spectrum of diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号