首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10069篇
  免费   815篇
  国内免费   2篇
  2023年   55篇
  2022年   114篇
  2021年   229篇
  2020年   148篇
  2019年   187篇
  2018年   239篇
  2017年   200篇
  2016年   341篇
  2015年   541篇
  2014年   613篇
  2013年   712篇
  2012年   872篇
  2011年   887篇
  2010年   576篇
  2009年   454篇
  2008年   594篇
  2007年   599篇
  2006年   516篇
  2005年   533篇
  2004年   451篇
  2003年   443篇
  2002年   369篇
  2001年   116篇
  2000年   89篇
  1999年   113篇
  1998年   104篇
  1997年   68篇
  1996年   62篇
  1995年   62篇
  1994年   51篇
  1993年   52篇
  1992年   38篇
  1991年   36篇
  1990年   41篇
  1989年   28篇
  1988年   22篇
  1987年   20篇
  1986年   25篇
  1985年   18篇
  1984年   23篇
  1983年   26篇
  1982年   26篇
  1981年   20篇
  1980年   11篇
  1979年   12篇
  1978年   28篇
  1977年   15篇
  1973年   10篇
  1972年   15篇
  1968年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Summary Two 4-hydroxybenzoate decarboxylase activities and a phenol carboxylase activity were found in cell-free extracts of a defined, 4-hydroxybenzoate- or phenol-grown consortium. Both decarboxylase activities were loosely membrane-associated and required K+ but a different pH and ion strength. Loss of activity of both decarboxylases by EDTA could be compensated by Zn2+ ions. The K m values for 4-hydroxybenzoate and K+ of the decarboxylase activities with pH optima at 6.4 or 7.8 were 0.02 and 2.5 or 0.004 and 0.5 mm, respectively. 3,4-Dihydroxybenzoate, 3,4,5-tridydroxybenzoate, 3,5-dimethoxy-4-hydroxybenzoate and 3-chloro-4-hydroxybenzoate were also decarboxylated by both enzyme activities. The phenol carboxylase was a soluble enzyme with its pH optimum at 6.5. It required K+, Rb+ or NH inf4 sup+ as monovalent, Zn2+, Mg2+, Mn2+ or Ni2+ as divalent cations and catalysed the carboxylation of phenol if 2,4-,2,3,4- or 2,4,6-hydroxybezoates were absent. The three enzyme activities were not influenced by Avidin and thus were probably not biotin-dependent enzymes. Offprint requests to: J. Winter  相似文献   
102.
Plasticity of the tobacco genome was studied by testing the DNAs of protoplast-derived regenerants with three different repetitive DNA sequences by the method of quantitative DNA/DNA hybridizations. A large population of 91 regenerants belonging to 35 different protoclones was analysed and a high degree of heterogeneity in the contents of the different DNA repeats was detected. The contents of middle repetitive sequences of two types were more stable or changed in the same direction, while the highly repetitive sequence varied independently and displayed a significant reduction in comparison with the two other sequences. Comparing the variation within the subpopulations of plants of the same clonal origin and the variation among the protoclones led to a conclusion that the pre-existing DNA variability in the starting plant material and/or thein vitro stress during the very early stages of protoclone regeneration played a decisive role in the formation of modified genomes in regenerants.  相似文献   
103.
In amphibians and teleosts, retina and tectum grow incongruently. In order to maintain the retinotopy of the retinotectal projection, Gaze, Keating, and Chung (1974) postulated a shifting of terminals throughout growth. In order to test the possibility that ingrowing retinal fibers are the driving force for this shifting, we induced a permanent retinal projection into the ipsilateral tectum in juveniles of the cichlid fish Haplochromis burtoni. The surface of the tectum had increased (11–18 months later) 2.5–5.8 times, and the surface of the retina 8.6–14 times. Filling of ganglion cells with horseradish peroxidase (HRP) retrogradely from the tectum showed ipsilaterally regenerating ganglion cells only in the center of the retina. The position of ganglion cells indicated that the ipsilateral projection derived only from axotomized and regenerating retinal ganglion cells but not from those newly born. Ipsilaterally projecting retinal fibers showed terminals only in the rostral half of the tectum. Comparison of area of terminations of ipsilaterally projecting ganglion cells at various times after the crush provided no evidence for expansion or a shift into caudal tectal areas throughout the period of growth. These findings are compatible with the idea that newly ingrowing fibers induce older terminals to move caudally.  相似文献   
104.
Inhibition of EcoRI DNA methylase with cofactor analogs   总被引:5,自引:0,他引:5  
Four analogs of the natural cofactor S-adenosylmethionine (AdoMet) were tested for their ability to bind and inhibit the prokaryotic enzyme, EcoRI adenine DNA methylase. The EcoRI methylase transfers the methyl group from AdoMet to the second adenine in the double-stranded DNA sequence 5'GAATTC3'. Dissociation constants (KD) of the binary methylase-analog complexes obtained in the absence of DNA with S-adenosylhomocysteine (AdoHcy), sinefungin, N-methyl-AdoMet, and N-ethylAdoMet are 225, 43, greater than 1000, and greater than 1000 microM, respectively. In the presence of a DNA substrate, all four analogs show simple competitive inhibition with respect to AdoMet. The product of the enzymic reaction, AdoHcy, is a poor inhibitor of the enzyme (KI(AdoHcy) = 9 microM; KM(AdoMet) = 0.60 microM). Two synthetic analogs, N-methyl-AdoMet and N-ethyl-AdoMet, were also shown to be poor inhibitors with KI values of 50 and greater than 1000 microM, respectively. In contrast, the naturally occurring analog sinefungin was shown to be a highly potent inhibitor (KI = 10 nM). Gel retardation assays confirm that the methylase-DNA-sinefungin complex is sequence-specific. The ternary complex is the first sequence-specific complex detected for any DNA methylase. Potential applications to structural studies of methylase-DNA interactions are discussed.  相似文献   
105.
The x-ray structure of the EcoRI endonuclease-DNA complex (3) suggests that hydrogen bonds between amino acids, glutamic acid 144, arginine 145, and arginine 200, and major groove base moieties are the molecular determinants of specificity. We have investigated residue 144 using aspartate and glutamine substitutions introduced by site-directed mutagenesis. Substitution with glutamine results in a null phenotype (at least a 2000-fold reduction in activity). On the other hand, the aspartic acid mutant (ED144) retained in vivo activity. Substrate binding and catalytic studies were done with purified ED144 enzyme. The affinity of the ED144 enzyme for the canonical sequence 5'-GAATTC-3' is about 340-fold less than the wild-type (WT) enzyme, while its affinity for nonspecific DNA is about 50 times greater. The ED144 enzyme cleaves one strand in the EcoRI site in plasmid pBR322 with a kcat/Km similar to WT. In contrast to the WT enzyme, the ED144 enzyme dissociates after the first strand cleavage. Partitioning between cleavage and dissociation at the first and second cleavage steps for the ED144 enzyme is extremely salt-sensitive. The altered partitioning results largely from a destabilization of the enzyme-DNA complex, particularly the enzyme-nicked DNA complex, with only small changes in the respective cleavage rates. The hydrogen bonds of Glu-144 are critical, they appear to act cooperatively with other specificity contacts to stabilize the enzyme-DNA complex.  相似文献   
106.
F9 embryonal carcinoma cells express high levels of a 53,000-molecular-weight cellular tumor antigen called p53. When F9 cell cultures are treated with retinoic acid and dibutyryl adenosine 3',5'-phosphate, they differentiate, predominantly into endoderm-like cells. This differentiation is accompanied by a marked decrease in the levels of p53. The mechanism(s) responsible for this decline in the level of p53 in differentiated cells was investigated. The results demonstrate that the high levels of p53 in F9 cells relative to their differentiated progeny were not due to alterations in the stability or turnover of this protein. Rather, the regulation during differentiation involved a marked decrease in the amount of in vitro translatable p53 mRNA detected in the differentiated cell cultures. This mechanism is unlike the one operating during the simian virus 40 infection or transformation, where the increased levels of p53 are largely due to the increased stability of the p53 protein.  相似文献   
107.
Mitochondrial protein synthesis, primary (antimycin-sensitive) respiration and secondary (antimycin-insensitive, salicyl-hydroxamate-sensitive) respiration, have been characterized in the dimorphic yeastEndomycopsis capsularis. The inhibition by chloramphenicol (CAP) of the morphogenetic development from the yeast-like form to the mycelial structure in this yeast could represent the intervention in the morphogenetic process of mitochondrial protein synthesis, since chloramphenicol blocks in vivo and in vitro mitochondrial protein synthesis. In fact, other functions such as primary and secondary respiration, do not seem to play a role in the morphogenetic development since their inhibition by antimycin A (AA) or by salicyl-hydroxamic acid (SHAM) does not affect the process. In addition, mitochondrial protein synthesis has been shown to be uninhibited by the two respiratory inhibitors.  相似文献   
108.
Antisera from some hamsters bearing adenovirus-induced tumors contain antibodies to an 11,000 Mr adenovirus-induced protein. In adenovirus-infected HeLa cells, this early viral protein was specifically associated with the nuclear matrix fraction. After two-dimensional gel electrophoresis, two forms of the 11,000 Mr protein at pI 5.6 and pI 5.4 were found. Only the pI 5.4 form of this protein was associated with the nuclear matrix fraction. Adenoviruses from groups A, B, C, D and E all produced an early viral protein (10,000 to 12,000 Mr) that reacted with group C antibody to the 11,000 Mr protein. To date, this is the only known early viral protein that is immunologically conserved in all of the human adenovirus groups.The positions of two methionine and seven leucine residues were determined by sequencing the first 35 amino acids from the N terminus of the adenovirus serotype 2 group C 11,000 Mr protein. The positions of these amino acid residues were compared to the adenovirus serotype 2 nucleotide sequence, which uniquely localized the structural gene of the 11,000 Mr protein to region E4, subregion 3 in type 2 adenovirus. A frameshift mutant, which contained a deletion of one base-pair in the structural gene of the 11,000 Mr protein, was isolated and mapped by marker rescue and nucleotide sequence analysis. This mutant failed to produce immunologically detectable 11,000 Mr protein. The mutant had a viable phenotype, producing normal levels of infectious virus in both HeLa cells and WI38 cells in culture. These experiments identify the first adenovirus early region 4 protein detected in virus-infected cells.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号