全文获取类型
收费全文 | 9314篇 |
免费 | 684篇 |
国内免费 | 2篇 |
专业分类
10000篇 |
出版年
2024年 | 4篇 |
2023年 | 52篇 |
2022年 | 126篇 |
2021年 | 219篇 |
2020年 | 133篇 |
2019年 | 172篇 |
2018年 | 226篇 |
2017年 | 191篇 |
2016年 | 317篇 |
2015年 | 505篇 |
2014年 | 589篇 |
2013年 | 687篇 |
2012年 | 827篇 |
2011年 | 849篇 |
2010年 | 557篇 |
2009年 | 427篇 |
2008年 | 561篇 |
2007年 | 566篇 |
2006年 | 486篇 |
2005年 | 503篇 |
2004年 | 424篇 |
2003年 | 403篇 |
2002年 | 354篇 |
2001年 | 86篇 |
2000年 | 61篇 |
1999年 | 84篇 |
1998年 | 92篇 |
1997年 | 64篇 |
1996年 | 54篇 |
1995年 | 58篇 |
1994年 | 46篇 |
1993年 | 44篇 |
1992年 | 26篇 |
1991年 | 28篇 |
1990年 | 27篇 |
1989年 | 17篇 |
1988年 | 13篇 |
1987年 | 11篇 |
1986年 | 13篇 |
1985年 | 9篇 |
1984年 | 11篇 |
1983年 | 14篇 |
1982年 | 15篇 |
1981年 | 11篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 7篇 |
1977年 | 5篇 |
1976年 | 5篇 |
1975年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Lena Hess Verena Moos Arnel A. Lauber Wolfgang Reiter Michael Schuster Natascha Hartl Daniel Lackner Thorina Boenke Anna Koren Paloma M. Guzzardo Brigitte Gundacker Anna Riegler Petra Vician Claudia Miccolo Susanna Leiter Mahesh B. Chandrasekharan Terezia Vcelkova Andrea Tanzer Jun Qi Jun James Bradner Gerald Brosch Markus Hartl Christoph Bock Tilmann Bürckstümmer Stefan Kubicek Susanna Chiocca Srividya Bhaskara Christian Seiser 《PLoS genetics》2022,18(8)
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention. 相似文献
52.
Breunig M Lungwitz U Liebl R Fontanari C Klar J Kurtz A Blunk T Goepferich A 《The journal of gene medicine》2005,7(10):1287-1298
BACKGROUND: Linear polyethylenimine (LPEI) with a molecular weight (MW) of 22 kDa has been described as having a superior ability to induce gene transfer compared to its branched form. However, the transfection efficiency of the polymer cannot be enhanced beyond a certain limit due to cytotoxicity. We explored the potential of utilizing LPEIs with MWs ranging from 1.0 to 9.5 kDa to overcome this limitation. METHODS: Polyplexes of plasmid DNA encoding for the enhanced green fluorescent protein (EGFP) and various LPEIs were compared concerning their transfection efficiency and cytotoxicity in CHO-K1 and HeLa cells by flow cytometry. The involvement of endolysosomes in LPEI-mediated gene transfer was investigated by applying the proton pump inhibitor bafilomycin A1 and the lysosomotropic agent sucrose. Confocal laser scanning microscopy was applied to assess the size and shape of polyplexes under cell culture conditions, to detect their endolysosomal localization and to observe their translocation to the nucleus. RESULTS: The transfection efficiency could be altered by varying the MW and the amount of the polymer available for polyplex formation. The highest transfection efficiency (about 44%), i.e. the fraction of EGFP-positive cells, was obtained with LPEI 5.6 kDa, while the cytotoxicity remained low. The colocalization of polyplexes and endolysosomes was observed, and it appeared that the larger polyplexes escaped from the acidic organelles particularly quickly. For LPEI 5.0 and 9.0 kDa, the number of cells and nuclei that had taken up DNA after 6 hours was similar, as determined by flow cytometry. CONCLUSIONS: Our study suggests that LPEIs with low MWs are promising candidates for non-viral gene delivery, because they are more efficient and substantially less toxic than their higher MW counterparts. 相似文献
53.
54.
J?rg Willenborg Claudia Huber Anna Koczula Birgit Lange Wolfgang Eisenreich Peter Valentin-Weigand Ralph Goethe 《The Journal of biological chemistry》2015,290(9):5840-5854
Streptococcus suis is a neglected zoonotic pathogen that has to adapt to the nutritional requirements in the different host niches encountered during infection and establishment of invasive diseases. To dissect the central metabolic activity of S. suis under different conditions of nutrient availability, we performed labeling experiments starting from [13C]glucose specimens and analyzed the resulting isotopologue patterns in amino acids of S. suis grown under in vitro and ex vivo conditions. In combination with classical growth experiments, we found that S. suis is auxotrophic for Arg, Gln/Glu, His, Leu, and Trp in chemically defined medium. De novo biosynthesis was shown for Ala, Asp, Ser, and Thr at high rates and for Gly, Lys, Phe, Tyr, and Val at moderate or low rates, respectively. Glucose degradation occurred mainly by glycolysis and to a minor extent by the pentose phosphate pathway. Furthermore, the exclusive formation of oxaloacetate by phosphoenolpyruvate (PEP) carboxylation became evident from the patterns in de novo synthesized amino acids. Labeling experiments with S. suis grown ex vivo in blood or cerebrospinal fluid reflected the metabolic adaptation to these host niches with different nutrient availability; however, similar key metabolic activities were identified under these conditions. This points at the robustness of the core metabolic pathways in S. suis during the infection process. The crucial role of PEP carboxylation for growth of S. suis in the host was supported by experiments with a PEP carboxylase-deficient mutant strain in blood and cerebrospinal fluid. 相似文献
55.
Patricia L. Fernandez Fabianno F. Dutra Letícia Alves Rodrigo T. Figueiredo Diego Mour?o-Sa Guilherme B. Fortes Sophie Bergstrand David L?nn Ricardo R. Cevallos Renata M. S. Pereira Ulisses G. Lopes Leonardo H. Travassos Claudia N. Paiva Marcelo T. Bozza 《The Journal of biological chemistry》2010,285(43):32844-32851
Infectious diseases that cause hemolysis are among the most threatening human diseases, because of severity and/or global distribution. In these conditions, hemeproteins and heme are released, but whether heme affects the inflammatory response to microorganism molecules remains to be characterized. Here, we show that heme increased the lethality and cytokine secretion induced by LPS in vivo and enhanced the secretion of cytokines by macrophages stimulated with various agonists of innate immune receptors. Activation of nuclear factor κB (NF-κB) and MAPKs and the generation of reactive oxygen species were essential to the increase in cytokine production induced by heme plus LPS. This synergistic effect of heme and LPS was blocked by a selective inhibitor of spleen tyrosine kinase (Syk) and was abrogated in dendritic cells deficient in Syk. Moreover, inhibition of Syk and the downstream molecules PKC and PI3K reduced the reactive oxygen species generation by heme. Our results highlight a mechanism by which heme amplifies the secretion of cytokines triggered by microbial molecule activation and indicates possible pathways for therapeutic intervention during hemolytic infectious diseases. 相似文献
56.
We compared growth rate, cell glucose turnover and expression of ATP-binding-cassette (ABC) transporters in Leishmania amazonensis (LTB0016; LTB) versus LTB(160) selected for resistance against the ABC transporter blocker glibenclamide. Additionally, we evaluated the influence of drug-resistance on Leishmania sensitivity against 2-mercaptoacetate and 2-deoxyglucose. Our data demonstrate that (1) LTB(160) and LTB constitutively express ABC transporters for neutral substrates, (2) glibenclamide resistance induces the expression of organic anion ABC transporters, members of the drug resistance associated transporters subfamily, (3) LTB(160) parasites use less glucose as energy substrate and exhibit a slower glucose uptake than LTB cells, and (4) LTB(160) parasites are less sensitive to 2-mercaptoacetate and 2-deoxyglucose than the glibenclamide-sensitive Leishmania LTB. Together these and previous results indicate that the metabolic adaptations expressed in drug-resistant LTB(160) differ from those described for mammalian drug resistant cells and constitute general mechanisms that underlie drug resistance in Leishmania and may be helpful for identifying alternative strategies to circumvent drug resistance in leishmaniasis. 相似文献
57.
Silveira GF Meyer F Delfraro A Mosimann AL Coluchi N Vasquez C Probst CM Báfica A Bordignon J Dos Santos CN 《Journal of virology》2011,85(11):5374-5383
A recent (2007 to 2009) dengue outbreak caused by dengue virus (DENV) in Paraguay presented unusual severe clinical outcomes associated with 50% mortality rates. Although it has been reported that inflammatory responses influence the severity of dengue virus infection (T. Pang, M. J. Cardosa, and M. G. Guzman, Immunol. Cell Biol. 85:43-45, 2007), there remains a paucity of information on virus-innate immunity interactions influencing clinical outcome. Using human dendritic cells from a major innate immune cell population as an in vitro model, we have investigated signature cytokine responses as well as infectivity-replicative profiles of DENV clinical isolates from either a nonfatal case of classical dengue fever (strain DENV3/290; isolated in Brazil in 2002) or a fatal case of dengue fever with visceral complications isolated in Paraguay in 2007 (strain DENV3/5532). Strain DENV3/5532 was found to display significantly higher replicative ability than DENV3/290 in monocyte-derived dendritic cells (mdDCs). In addition, compared to DENV3/290 results, mdDCs exposed to DENV3/5532 showed increased production of proinflammatory cytokines associated with higher rates of programmed cell death, as shown by annexin V staining. The observed phenotype was due to viral replication, and tumor necrosis factor alpha (TNF-α) appears to exert a protective effect on virus-induced mdDC apoptosis. These results suggest that the DENV3/5532 strain isolated from the fatal case replicates within human dendritic cells, modulating cell survival and synthesis of inflammatory mediators. 相似文献
58.
Marino-Merlo Francesca Papaianni Emanuela Maugeri Teresa L. Zammuto Vincenzo Spanò Antonio Nicolaus Barbara Poli Annarita Di Donato Paola Mosca Claudia Mastino Antonio Gugliandolo Concetta 《Applied microbiology and biotechnology》2017,101(20):7487-7496
Applied Microbiology and Biotechnology - Herpes simplex virus type 1 (HSV-1) is responsible of common and widespread viral infections in humans through the world, and of rare, but extremely severe,... 相似文献
59.
Gesslbauer B Poljak A Handwerker C Schüler W Schwendenwein D Weber C Lundberg U Meinke A Kungl AJ 《Proteomics》2012,12(6):845-858
The versatility of the surface of Borrelia, the causative agent of Lyme borreliosis, is very important in host-pathogen interactions allowing bacteria to survive in ticks and to persist in a mammalian environment. To identify the surface proteome of Borrelia, we have performed a large comparative proteomic analysis on the three most important pathogenic Borrelia species, namely B. burgdorferi (strain B31), B. afzelii (strain K78), and B. garinii (strain PBi). Isolation of membrane proteins was performed by using three different approaches: (i) a detergent-based fractionation of outer membrane proteins; (ii) a trypsin-based partial shedding of outer cell surface proteins; (iii) biotinylation of membrane proteins and preparation of the biotin-labelled fraction using streptavidin. Proteins derived from the detergent-based fractionation were further sub-fractionated by heparin affinity chromatography since heparin-like molecules play an important role for microbial entry into human cells. All isolated proteins were analysed using either a gel-based liquid chromatography (LC)-MS/MS technique or by two-dimensional (2D)-LC-MS/MS resulting in the identification of 286 unique proteins. Ninety seven of these were found in all three Borrelia species, representing potential targets for a broad coverage vaccine for the prevention of Lyme borreliosis caused by the different Borrelia species. 相似文献
60.
High dietary salt decreases antioxidant defenses in the liver of fructose-fed insulin-resistant rats
Waleska Claudia Dornas Wanderson Geraldo de Lima Rinaldo Cardoso dos Santos Joyce Ferreira da Costa Guerra Melina Oliveira de Souza Maísa Silva Lorena Souza e Silva Mirla Fiuza Diniz Marcelo Eustáquio Silva 《The Journal of nutritional biochemistry》2013,24(12):2016-2022
In this study we investigated the hypothesis that a high-salt diet to hyperinsulinemic rats might impair antioxidant defense owing to its involvement in the activation of sodium reabsorption to lead to higher oxidative stress. Rats were fed a standard (CON), a high-salt (HS), or a high-fructose (HF) diet for 10 weeks after which, 50% of the animals belonging to the HF group were switched to a regimen of high-fructose and high-salt diet (HFS) for 10 more weeks, while the other groups were fed with their respective diets. Animals were then euthanized and their blood and liver were examined. Fasting plasma glucose was found to be significantly higher (approximately 50%) in fructose-fed rats than in the control and HS rats, whereas fat liver also differed in these animals, producing steatosis. Feeding fructose-fed rats with the high-salt diet triggered hyperinsulinemia and lowered insulin sensitivity, which led to increased levels of serum sodium compared to the HS group. This resulted in membrane perturbation, which in the presence of steatosis potentially enhanced hepatic lipid peroxidation, thereby decreasing the level of antioxidant defenses, as shown by GSH/GSSG ratio (HFS rats, 7.098±2.1 versus CON rats, 13.2±6.1) and superoxide dismutase (HFS rats, 2.1±0.05 versus CON rats, 2.3±0.1%), and catalase (HFS rats, 526.6±88.6 versus CON rats, 745.8±228.7 U/mg ptn) activities. Our results indicate that consumption of a salt-rich diet by insulin-resistant rats may lead to regulation of sodium reabsorption, worsening hepatic lipid peroxidation associated with impaired antioxidant defenses. 相似文献