首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9213篇
  免费   673篇
  国内免费   2篇
  9888篇
  2024年   4篇
  2023年   51篇
  2022年   126篇
  2021年   219篇
  2020年   132篇
  2019年   172篇
  2018年   226篇
  2017年   188篇
  2016年   312篇
  2015年   500篇
  2014年   581篇
  2013年   682篇
  2012年   819篇
  2011年   841篇
  2010年   550篇
  2009年   425篇
  2008年   555篇
  2007年   560篇
  2006年   484篇
  2005年   499篇
  2004年   421篇
  2003年   399篇
  2002年   346篇
  2001年   81篇
  2000年   57篇
  1999年   81篇
  1998年   90篇
  1997年   64篇
  1996年   54篇
  1995年   56篇
  1994年   45篇
  1993年   41篇
  1992年   24篇
  1991年   26篇
  1990年   27篇
  1989年   17篇
  1988年   13篇
  1987年   11篇
  1986年   13篇
  1985年   9篇
  1984年   11篇
  1983年   13篇
  1982年   15篇
  1981年   11篇
  1980年   5篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
排序方式: 共有9888条查询结果,搜索用时 15 毫秒
171.
Pathogen recognition and signal transduction during plant pathogenesis is essential for the activation of plant defense mechanisms. To facilitate easy access to published data and to permit comparative studies of different pathogen response pathways, a database is indispensable to give a broad overview of the components and reactions so far known. PathoPlant has been developed as a relational database to display relevant components and reactions involved in signal transduction related to plant-pathogen interactions. On the organism level, the tables 'plant', 'pathogen' and 'interaction' are used to describe incompatible interactions between plants and pathogens or diseases. On the molecular level, plant pathogenesis related information is organized in PathoPlant's main tables 'molecule', 'reaction' and 'location'. Signal transduction pathways are modeled as consecutive sequences of known molecules and corresponding reactions. PathoPlant entries are linked to associated internal records as well as to entries in external databases such as SWISS-PROT, GenBank, PubMed, and TRANSFAC. PathoPlant is available as a web-based service at http://www.pathoplant.de.  相似文献   
172.
DEK was originally described as a proto-oncogene protein and is now known to be a major component of metazoan chromatin. DEK is able to modify the structure of DNA by introducing supercoils. In order to find interaction partners and functional domains of DEK, we performed yeast two-hybrid screens and mutational analyses. Two-hybrid screening yielded C-terminal fragments of DEK, suggesting that DEK is able to multimerize. We could localize the domain to amino acids 270 to 350 and show that multimerization is dependent on phosphorylation by CK2 kinase in vitro. We also found two DNA binding domains of DEK, one on a fragment including amino acids 87 to 187 and containing the SAF-box DNA binding motif, which is located between amino acids 149 and 187. This region is sufficient to introduce supercoils into DNA. The second DNA binding domain is located between amino acids 270 and 350 and thus overlaps the multimerization domain. We show that the two DNA-interacting domains differ in their binding properties and in their abilities to respond to CK2 phosphorylation.  相似文献   
173.
Mental retardation is a frequent cause of intellectual and physical impairment. Several genes associated with mental retardation have been mapped to the X chromosome, among them, there is FMR1. The absence of or mutation in the Fragile Mental Retardation Protein, FMRP, is responsible for the Fragile X syndrome. FMRP is an RNA binding protein that shuttles between the nucleus and the cytoplasm. FMRP binds to several mRNAs including its own mRNA at a sequence region containing a G quartet structure. Some of the candidate downstream genes recently identified encode for synaptic proteins. Neuronal studies indicate that FMRP is located at synapses and loss of FMRP affects synaptic plasticity. At the synapses, FMRP acts as a translational repressor and in particular regulates translation of specific dendritic mRNAs, some of which encode cytoskeletal proteins and signal transduction molecules. This action occurs via a ribonucleoprotein complex that includes a small dendritic non-coding neuronal RNA that determines the specificity of FMRP function via a novel mechanism of translational repression. Since local protein synthesis is required for synaptic development and function, this role of FMRP likely underlies some of the behavioural and developmental symptoms of FRAXA patients. Finally we review recent work on the Drosophila system that connects cytoskeleton remodelling and FMRP function.  相似文献   
174.
An oscillatory increase in pancreatic beta cell cytoplasmic free Ca2+ concentration, [Ca2+]i, is a key feature in glucose-induced insulin release. The role of the voltage-gated Ca2+ channel beta3 subunit in the molecular regulation of these [Ca2+]i oscillations has now been clarified by using beta3 subunit-deficient beta cells. beta3 knockout mice showed a more efficient glucose homeostasis compared to wild-type mice due to increased glucose-stimulated insulin secretion. This resulted from an increased glucose-induced [Ca2+]i oscillation frequency in beta cells lacking the beta3 subunit, an effect accounted for by enhanced formation of inositol 1,4,5-trisphosphate (InsP3) and increased Ca2+ mobilization from intracellular stores. Hence, the beta3 subunit negatively modulated InsP3-induced Ca2+ release, which is not paralleled by any effect on the voltage-gated L type Ca2+ channel. Since the increase in insulin release was manifested only at high glucose concentrations, blocking the beta3 subunit in the beta cell may constitute the basis for a novel diabetes therapy.  相似文献   
175.
The male-specific regions of the Y chromosome (MSY) of the human and the chimpanzee (Pan troglodytes) are fully sequenced. The most striking difference is the dramatic rearrangement of large parts of their respective MSYs. These non-recombining regions include ampliconic gene families that are known to be important for male reproduction,and are consequently under significant selective pressure. However, whether the published Y-chromosomal pattern of ampliconic fertility genes is invariable within P. troglodytes is an open but fundamental question pertinent to discussions of the evolutionary fate of the Y chromosome in different primate mating systems. To solve this question we applied fluorescence in situ hybridisation (FISH) of testis-specific expressed ampliconic fertility genes to metaphase Y chromosomes of 17 chimpanzees derived from 11 wild-born males and 16 bonobos representing seven wild-born males. We show that of eleven P. troglodytes Y-chromosomal lines, ten Y-chromosomal variants were detected based on the number and arrangement of the ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y)—a so-far never-described variation of a species'' Y chromosome. In marked contrast, no variation was evident among seven Y-chromosomal lines of the bonobo, P. paniscus, the chimpanzee''s closest living relative. Although, loss of variation of the Y chromosome in the bonobo by a founder effect or genetic drift cannot be excluded, these contrasting patterns might be explained in the context of the species'' markedly different social and mating behaviour. In chimpanzees, multiple males copulate with a receptive female during a short period of visible anogenital swelling, and this may place significant selection on fertility genes. In bonobos, however, female mate choice may make sperm competition redundant (leading to monomorphism of fertility genes), since ovulation in this species is concealed by the prolonged anogenital swelling, and because female bonobos can occupy high-ranking positions in the group and are thus able to determine mate choice more freely.  相似文献   
176.
BackgroundPolyunsaturated n-3 and n-6 polyunsaturated fatty acids (PUFA) are precursors of biologically active metabolites that affect blood pressure (BP) regulation. This study investigated the association of n-3 and n-6 PUFA and BP in children and adolescents.MethodsIn a subsample of 1267 children aged 2–9 years at baseline of the European IDEFICS (Identification and prevention of dietary- and lifestyle-induced health effects in children and infants) cohort whole blood fatty acids were measured by a validated gas chromatographic method. Systolic and diastolic BP was measured at baseline and after two and six years. Mixed-effects models were used to assess the associations between fatty acids at baseline and BP z-scores over time adjusting for relevant covariables. Models were further estimated stratified by sex and weight status.ResultsThe baseline level of arachidonic acid was positively associated with subsequent systolic BP (β = 0.08, P = 0.002) and diastolic BP (β = 0.07, P<0.001). In thin/normal weight children, baseline alpha-linolenic (β = -1.13, P = 0.003) and eicosapentaenoic acid (β = -0.85, P = 0.003) levels were inversely related to baseline and also to subsequent systolic BP and alpha-linolenic acid to subsequent diastolic BP. In overweight/obese children, baseline eicosapentaenoic acid level was positively associated with baseline diastolic BP (β = 0.54, P = 0.005).ConclusionsLow blood arachidonic acid levels in the whole sample and high n-3 PUFA levels in thin/normal weight children are associated with lower and therefore healthier BP. The beneficial effects of high n-3 PUFA on BP were not observed in overweight/obese children, suggesting that they may have been overlaid by the unfavorable effects of excess weight.  相似文献   
177.
Chronic airway infection is a hallmark feature of cystic fibrosis (CF) disease. In the present study, sputum samples from CF patients were collected and characterized by 16S rRNA gene-targeted approach, to assess how lung microbiota composition changes following a severe decline in lung function. In particular, we compared the airway microbiota of two groups of patients with CF, i.e. patients with a substantial decline in their lung function (SD) and patients with a stable lung function (S). The two groups showed a different bacterial composition, with SD patients reporting a more heterogeneous community than the S ones. Pseudomonas was the dominant genus in both S and SD patients followed by Staphylococcus and Prevotella. Other than the classical CF pathogens and the most commonly identified non-classical genera in CF, we found the presence of the unusual anaerobic genus Sneathia. Moreover, the oligotyping analysis revealed the presence of other minor genera described in CF, highlighting the polymicrobial nature of CF infection. Finally, the analysis of correlation and anti-correlation networks showed the presence of antagonism and ecological independence between members of Pseudomonas genus and the rest of CF airways microbiota, with S patients showing a more interconnected community in S patients than in SD ones. This population structure suggests a higher resilience of S microbiota with respect to SD, which in turn may hinder the potential adverse impact of aggressive pathogens (e.g. Pseudomonas). In conclusion, our findings shed a new light on CF airway microbiota ecology, improving current knowledge about its composition and polymicrobial interactions in patients with CF.  相似文献   
178.
Intracellular reactive iron is a source of free radicals and a possible cause of cell damage. In this study, we analyzed the changes in iron homeostasis generated by iron accumulation in neuroblastoma (N2A) cells and hippocampal neurons. Increasing concentrations of iron in the culture medium elicited increasing amounts of intracellular iron and of the reactive iron pool. The cells had both IRP1 and IRP2 activities, being IRP1 activity quantitatively predominant. When iron in the culture medium increased from 1 to 40 microm, IRP2 activity decreased to nil. In contrast, IRP1 activity decreased when iron increased up to 20 microm, and then, unexpectedly, increased. IRP1 activity at iron concentrations above 20 microm was functional as it correlated with increased (55) Fe uptake. The increase in IRP1 activity was mediated by oxidative-stress as it was largely abolished by N-acetyl-L-cysteine. Culturing cells with iron resulted in proteins and DNA modifications. In summary, iron uptake by N2A cells and hippocampus neurons did not shut off at high iron concentrations in the culture media. As a consequence, iron accumulated and generated oxidative damage. This behavior is probably a consequence of the paradoxical activation of IRP1 at high iron concentrations, a condition that may underlie some processes associated with neuronal degeneration and death.  相似文献   
179.
Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented ‘cued’ and ‘non-cued’ conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18–25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation).  相似文献   
180.
BackgroundCirculating cell-free fetal DNA has enabled non-invasive prenatal fetal aneuploidy testing without direct discrimination of the maternal and fetal DNA. Testing may be improved by specifically enriching the sample material for fetal DNA. DNA methylation may allow for such a separation of DNA; however, this depends on knowledge of the methylomes of circulating cell-free DNA and its cellular contributors.ResultsWe perform whole genome bisulfite sequencing on a set of unmatched samples including circulating cell-free DNA from non-pregnant and pregnant female donors and genomic DNA from maternal buffy coat and placenta samples. We find CpG cytosines within longer fragments are more likely to be methylated. Comparison of the methylomes of placenta and non-pregnant circulating cell-free DNA reveal many of the 51,259 identified differentially methylated regions are located in domains exhibiting consistent placenta hypomethylation across millions of consecutive bases. We find these placenta hypomethylated domains are consistently located within regions exhibiting low CpG and gene density. Differentially methylated regions identified when comparing placenta to non-pregnant circulating cell-free DNA are recapitulated in pregnant circulating cell-free DNA, confirming the ability to detect differential methylation in circulating cell-free DNA mixtures.ConclusionsWe generate methylome maps for four sample types at single-base resolution, identify a link between DNA methylation and fragment length in circulating cell-free DNA, identify differentially methylated regions between sample groups, and uncover the presence of megabase-size placenta hypomethylated domains.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0645-x) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号