首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4542篇
  免费   341篇
  2021年   31篇
  2020年   19篇
  2019年   32篇
  2018年   41篇
  2017年   43篇
  2016年   75篇
  2015年   110篇
  2014年   128篇
  2013年   195篇
  2012年   238篇
  2011年   231篇
  2010年   154篇
  2009年   161篇
  2008年   243篇
  2007年   235篇
  2006年   246篇
  2005年   241篇
  2004年   229篇
  2003年   288篇
  2002年   300篇
  2001年   77篇
  2000年   39篇
  1999年   83篇
  1998年   95篇
  1997年   82篇
  1996年   73篇
  1995年   60篇
  1994年   57篇
  1993年   62篇
  1992年   78篇
  1991年   52篇
  1990年   33篇
  1989年   45篇
  1988年   48篇
  1987年   33篇
  1986年   27篇
  1985年   41篇
  1984年   42篇
  1983年   35篇
  1982年   56篇
  1981年   53篇
  1980年   47篇
  1979年   42篇
  1978年   40篇
  1977年   36篇
  1976年   41篇
  1975年   23篇
  1974年   19篇
  1973年   19篇
  1971年   18篇
排序方式: 共有4883条查询结果,搜索用时 15 毫秒
281.

Background  

R122, the primary autolysis site of the human cationic trypsinogen (PRSS1), constitutes an important "self-destruct" or "fail-safe" defensive mechanism against premature trypsin activation within the pancreas. Disruption of this site by a missense mutation, R122H, was found to cause hereditary pancreatitis. In addition to a c.365G>A (CGC>CAC) single nucleotide substitution, a c.365~366GC>AT (CGC>CAT) gene conversion event in exon 3 of PRSS1 was also found to result in a R122H mutation. This imposes a serious concern on the genotyping of pancreatitis by a widely used polymerase chain reaction-restriction fragment length polymorphism assay, which could only detect the commonest c.365G>A variant.  相似文献   
282.
We investigated the respiratory metabolism of the overwintering lizard Lacerta vivipara while in either supercooled or frozen states. With a variable pressure and volume microrespirometer and a chromatograph, we show that the oxygen consumption of the supercooled animals showed a nonlinear relationship with temperature and an aerobic metabolism demand between 0.5 and -1.5 degrees C. A significant increase in the respiratory quotient (RQ) values indicated an increasing contribution by the anaerobic pathways with decreasing temperature. In the frozen state, two phases are easily detectable and are probably linked to the ice formation within the body. During the first 5-6 h, the animals showed an oxygen consumption of 3.52 +/- 0.28 microl. g(-1). h(-1) and a RQ value of 0.52 +/- 0.09. In contrast, after ice equilibrium, oxygen consumption decreased sharply (0.55 +/- 0.09 microl. g(-1). h(-1)) and the RQ values increased (2.49 +/- 0.65). The present study confirms the fact that supercooled invertebrates and vertebrates respond differently to subzero temperatures, in terms of aerobic metabolism, and it shows that aerobic metabolism persists under freezing conditions.  相似文献   
283.
Chatani E  Nonomura K  Hayashi R  Balny C  Lange R 《Biochemistry》2002,41(14):4567-4574
To clarify the structural role of Phe46 inside the hydrophobic core of bovine pancreatic ribonuclease A (RNase A), thermal and pressure unfolding of wild-type RNase A and three mutant forms (F46V, F46E, and F46K) were analyzed by fourth-derivative UV absorbance spectroscopy. All the mutants, as well as the wild type, exhibited a two-state transition during both thermal and pressure unfolding, and both T(m) and P(m) decreased markedly when Phe46 was replaced with valine, glutamic acid, or lysine. The strongest effect was on the F46K mutant and the weakest on F46V. Both unfolding processes produced identical blue shifts in the fourth-derivative spectra, indicating that the tyrosine residues are similarly exposed in the temperature- and pressure-induced unfolded states. A comparison of Gibbs free energies determined from the pressure and temperature unfoldings, however, gave DeltaG(p)/DeltaG(t) ratios (r) of 1.7 for the wild type and 0.92 +/- 0.03 for the mutants. Furthermore, the DeltaV value for each mutant was larger than that for the wild type. CD spectra and activity measurements showed no obvious major structural differences in the folded state, indicating that the structures of the Phe46 mutants and wild type differ in the unfolded state. We propose a model in which Phe46 stabilizes the hydrophobic core at the boundary between two structural domains. Mutation of Phe46 decreases protein stability by weakening the unfolding cooperativity between these domains. This essential function of Phe46 in RNase A stability indicates that it belongs to a chain-folding initiation site.  相似文献   
284.
Following repeated administration of factor VIII (FVIII), a significant number of hemophilia A patients develop antibodies (Abs), inhibiting the procoagulant activity of infused FVIII. We have designed an approach based on the blocking of the deleterious activity of these Abs by peptide decoys mimicking the anti-FVIII Ab epitopes. Here, the well characterized inhibitory monoclonal Ab ESH8 served as a model. Several phage peptide libraries were screened for specific binding to ESH8. Seven constrained dodecapeptide sequences were obtained. Six sequences carried the consensus motif, hydrophobic-(Y/F)GKTXL. This motif showed a certain similarity with the (2231)QVDFQKTMKV(2240) sequence of the C(2) domain. In the seventh sequence, YCNPSIGDKNCR, the residues GDKN are similar to the sequence (2267)DGHQ(2270). Upon inspection of the C(2) domain crystallographic structure, the two stretches QVDFQKTMKV and DGHQ appeared close together in space and might constitute a discontinuous epitope. Corresponding synthetic peptides were able to inhibit the binding of ESH8 to FVIII in a specific and dose-dependent manner. Moreover, the ability of the selected peptides to neutralize the inhibitory activity of ESH8 was demonstrated in functional tests as well as in vivo in a murine model of hemophilia A. This study demonstrates the potential of this approach to neutralize the activity of potent inhibitory Abs.  相似文献   
285.
This study investigated genetic polymorphism on a local scale in Puccinia striiformis f. sp. tritici populations during natural epidemics, in four fields located in northern France and sampled in 1998 or 1999. Two hundred and forty-seven isolates were analyzed for their amplified fragment length polymorphism (AFLP) pattern through four primer combinations, and 194 of them were also tested for their virulence factors. Only one or two pathotypes were found in each field, and all isolates had virulence v17, matching the recently introduced Yr17 resistance gene. Polymorphism on a field scale was low. Although 67 loci were polymorphic, 77% of the isolates had the same AFLP pattern, all other patterns being rare or unique. Analyses of the genetic distance between AFLP patterns based on the Jaccard index allowed us to define 12 groups, but a bootstrap analysis showed that all isolates could be assigned to a single clonal lineage. This leads us to conclude that P. striiformis f. sp. tritici populations are clonal on a field scale in northern France.  相似文献   
286.
The B6(dom1) minor histocompatibility antigen (MiHA) is a model antigen, since it is both the epitome of an immunodominant epitope and an ideal target for adoptive cancer immunotherapy. Based on DNA sequencing and MS/MS analyses, we report that B6(dom1) corresponds to amino acids 770-778 (KAPDNRETL) of a protein we propose to call SIMP (source of immunodominant MHC-associated peptides) that is encoded by a mouse homolog of the yeast STT3gene. STT3, a member of the oligosaccharyltransferase complex, is essential for cell proliferation. Phenotypic and genotypic analyses among eight strains of mice revealed a precise correlation between susceptibility or resistance to B6(dom1)-specific cytotoxic T lymphocytes (CTLs) and the presence of a Glu vs Asp amino acid at position 776 of the SIMP protein, respectively. Strikingly, while the difference in the amino acid sequence 770-778 encoded by the two SIMP alleles represents a very conservative substitution, these allelic peptides were not crossreactive at the CTL level, and both peptides were immunodominant when presented to mice homozygous for the opposite allele. In addition, we have cloned a human ortholog of SIMP whose predicted protein shares 97% amino acid identity with mouse SIMP. These results strengthen the concept that MHC class-I-associated MiHAs originate as a consequence of rare polymorphisms among highly conserved genes. Furthermore, the notion that a peptide differing from a self analog by a single methylene group can be immunodominant has implications regarding our understanding of the mechanisms of immunodominance.  相似文献   
287.
Trypsin and mast cell tryptase can signal to epithelial cells, myocytes, and nerve fibers of the respiratory tract by cleaving proteinase-activated receptor 2 (PAR2). Since tryptase inhibitors are under development to treat asthma, a precise understanding of the contribution of PAR2 to airway inflammation is required. We examined the role of PAR2 in allergic inflammation of the airway by comparing OVA-sensitized and -challenged mice lacking or overexpressing PAR2. In wild-type mice, immunoreactive PAR2 was detected in airway epithelial cells and myocytes, and intranasal administration of a PAR2 agonist stimulated macrophage infiltration into bronchoalveolar lavage fluid. OVA challenge of immunized wild-type mice stimulated infiltration of leukocytes into bronchoalveolar lavage and induced airway hyperreactivity to inhaled methacholine. Compared with wild-type animals, eosinophil infiltration was inhibited by 73% in mice lacking PAR2 and increased by 88% in mice overexpressing PAR2. Similarly, compared with wild-type animals, airway hyperreactivity to inhaled methacholine (40 micro g/ml) was diminished 38% in mice lacking PAR2 and increased by 52% in mice overexpressing PAR2. PAR2 deletion also reduced IgE levels to OVA sensitization by 4-fold compared with those of wild-type animals. Thus, PAR2 contributes to the development of immunity and to allergic inflammation of the airway. Our results support the proposal that tryptase inhibitors and PAR2 antagonists may be useful therapies for inflammatory airway disease.  相似文献   
288.
Polynucleotide phosphorylase (PNPase), a homotrimeric exoribonuclease present in bacteria, is involved in mRNA degradation. In Escherichia coli, expression of this enzyme is autocontrolled at the translational level. We introduced about 30 mutations in the pnp gene by site-directed mutagenesis, most of them in phylogenetically conserved residues, and determined their effects on the three catalytic activities of PNPase, phosphorolysis, polymerisation and phosphate exchange, as well as on the efficiency of translational repression. The data are presented and discussed in the light of the crystallographic structure of PNPase from Streptomyces antibioticus. The results show that both PNPase activity and the presence of the KH and S1 RNA-binding domains are required for autocontrol. Deletions of these RNA-binding domains do not abolish any of the three catalytic activities, indicating that they are contained in a domain independent of the catalytic centre. Moreover, the catalytic centre was located around the tungsten-binding site identified by crystallography. Some mutations affect the three catalytic activities differently, an observation consistent with the presence of different subsites.  相似文献   
289.
Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes an acidic protease or an alkaline protease, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Previous results have indicated that the alkaline protease response to pH was dependent on YlRim101p, YlRim8p/YlPalF, and YlRim21p/YlPalH, three components of a conserved pH signaling pathway initially described in Aspergillus nidulans. To identify other partners of this response pathway, as well as pH-independent regulators of proteases, we searched for mutants that affect the expression of either or both acidic and alkaline proteases, using a YlmTn1-transposed genomic library. Four mutations affected only alkaline protease expression and identified the homolog of Saccharomyces cerevisiae SIN3. Eighty-nine mutations affected the expression of both proteases and identified 10 genes. Five of them define a conserved Rim pathway, which acts, as in other ascomycetes, by activating alkaline genes and repressing acidic genes at alkaline pH. Our results further suggest that in Y. lipolytica this pathway is active at acidic pH and is required for the expression of the acidic AXP1 gene. The five other genes are homologous to S. cerevisiae OPT1, SSY5, VPS28, NUP85, and MED4. YlOPT1 and YlSSY5 are not involved in pH sensing but define at least a second protease regulatory pathway.  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号