首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   59篇
  2018年   10篇
  2017年   6篇
  2016年   17篇
  2015年   21篇
  2014年   27篇
  2013年   33篇
  2012年   25篇
  2011年   34篇
  2010年   36篇
  2009年   34篇
  2008年   25篇
  2007年   29篇
  2006年   33篇
  2005年   36篇
  2004年   23篇
  2003年   28篇
  2002年   14篇
  2001年   16篇
  2000年   15篇
  1999年   14篇
  1998年   19篇
  1997年   19篇
  1996年   12篇
  1995年   13篇
  1994年   10篇
  1993年   15篇
  1992年   6篇
  1991年   9篇
  1990年   7篇
  1989年   14篇
  1988年   17篇
  1987年   14篇
  1986年   11篇
  1985年   14篇
  1984年   12篇
  1983年   10篇
  1982年   27篇
  1981年   8篇
  1980年   8篇
  1979年   8篇
  1978年   12篇
  1977年   8篇
  1976年   11篇
  1975年   8篇
  1974年   7篇
  1973年   10篇
  1972年   9篇
  1971年   9篇
  1967年   5篇
  1965年   4篇
排序方式: 共有860条查询结果,搜索用时 31 毫秒
71.
During corticogenesis, late-born callosal projection neurons (CPNs) acquire their laminar position through glia-guided radial migration and then undergo final differentiation. However, the mechanisms controlling radial migration and final morphology of CPNs are poorly defined. Here, we show that in COUP-TFI mutant mice CPNs are correctly specified, but are delayed in reaching the cortical plate and have morphological defects during migration. Interestingly, we observed that the rate of neuronal migration to the cortical plate normally follows a low-rostral to high-caudal gradient, similar to that described for COUP-TFI. This gradient is strongly impaired in COUP-TFI(-/-) brains. Moreover, the expression of the Rho-GTPase Rnd2, a modulator of radial migration, is complementary to both these gradients and strongly increases in the absence of COUP-TFI function. We show that COUP-TFI directly represses Rnd2 expression at the post-mitotic level along the rostrocaudal axis of the neocortex. Restoring correct Rnd2 levels in COUP-TFI(-/-) brains cell-autonomously rescues neuron radial migration and morphological transitions. We also observed impairments in axonal elongation and dendritic arborization of COUP-TFI-deficient CPNs, which were rescued by lowering Rnd2 expression levels. Thus, our data demonstrate that COUP-TFI modulates late-born neuron migration and favours proper differentiation of CPNs by finely regulating Rnd2 expression levels.  相似文献   
72.
The discovery and structure-activity relationship of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB(1) receptor is disclosed. Compound 26i was found to be a high potency, selective cannabinoid CB(1) antagonist.  相似文献   
73.
74.

Introduction  

Studies have shown that fetal progenitor cells persist in maternal blood or bone marrow for more than 30 years after delivery. Increased trafficking of fetal cells occurs during pregnancy complications, such as hypertension, preeclampsia, miscarriage and intra-uterine growth restriction (IUGR). Women with these pregnancy complications are significantly more often HLA-class II compatible with their spouses. Women who later develop scleroderma also give birth to an HLA-class II child more often. From these prior studies we hypothesized that preeclampsia and other pregnancy complications could be associated with increased levels of fetal cell trafficking, and later be involved in the development of scleroderma.  相似文献   
75.

Introduction  

Mast cells have been implicated to play a functional role in arthritis, especially in autoantibody-positive disease. Among the cytokines involved in rheumatoid arthritis (RA), IL-17 is an important inflammatory mediator. Recent data suggest that the synovial mast cell is a main producer of IL-17, although T cells have also been implicated as prominent IL-17 producers as well. We aimed to identify IL-17 expression by mast cells and T cells in synovium of arthritis patients.  相似文献   
76.
Potassium (K) is one of the major nutrients that is essential for plant growth and development. The majority of cellular K+ resides in the vacuole and tonoplast K+ channels of the TPK (Two Pore K) family are main players in cellular K+ homeostasis. All TPK channels were previously reported to be expressed in the tonoplast of the large central lytic vacuole (LV) except for one isoform in Arabidopsis that resides in the plasma membrane. However, plant cells often contain more than one type of vacuole that coexist in the same cell. We recently showed that two TPK isoforms (OsTPKa and OsTPKb) from Oryza sativa localize to different vacuoles with OsTPKa predominantly found in the LV tonoplast and OsTPKb primarily in smaller compartments that resemble small vacuoles (SVs). Our study further revealed that it is the C-terminal domain that determines differential targeting of OsTPKa and OsTPKb. Three C-terminal amino acids were particularly relevant for targeting TPKs to their respective endomembranes. In this addendum we further evaluate how the different localization of TPKa and TPKb impact on their physiological role and how TPKs provide a potential tool to study the physiology of different types of vacuole.Key words: TPK channels, small vacuoles, vacuolar targeting, potassiumThe roles of plant vacuolar K+ channels are diverse and include potassium homeostasis, turgor regulation and responses to abiotic stress. Vacuolar K+-selective channels belong to two-pore K+ (TPK) channel families which have been found in genomes of many plant species such as Arabidopsis, poplar, Physcomitrella, Eucalyptus, barley, potato, rice and tobacco (Fig. 1). TPKs have structural similarity to mammalian “tandem P domain” channels with a secondary structure that contains four transmembrane domains and two pore regions (Fig. 2).15 TPK channels have pore regions with a GYGD signature that endows K+ selectivity and a variable number of Ca2+ binding EF domains in the C terminus.38 One of the best characterized members of the TPK family is AtTPK1 from Arabidopsis thaliana. AtTPK1 activity is voltage independent but sensitive to cytosolic Ca2+, cytosolic pH and N-terminal phosphorylation by 14-3-3 proteins.5,6,8,9 In Arabidopsis, AtTPK1 expresses in the large lytic vacuole (LV) and plays roles in cellular K+ homeostasis, K+-release during stomatal closure and seed germination.4,5 Other members of the Arabidopsis TPK family (AtTPK2, AtTPK3, AtTPK5) have been shown to localize to the LV but also showed some expression in smaller, vesicle-like, compartments.4 However, none of these isoforms appears to form functional channels in planta although our experiments with heterologous expression of AtTPK3 and AtTPK5 in the K+ uptake deficient E. coli LB2003 demonstrates complementation of bacterial growth phenotype (Isayenkov S, et al. unpublished results). Equally intriguing, is the plasma membrane localization of the Arabidopsis TPK4 isoform, in spite of its sequence being very similar to that of other TPKs.10Open in a separate windowFigure 1Phylogenetic tree of plant TPKs. The three main clusters of TPKs comprise: Cluster 1 with AtTPK1-like channels; Cluster 2 with AtTPK3/TPK5-like channels; Cluster 3 with barley HvTPKb. Bootstrap analysis was performed using ‘Molecular Evolutionary Genetics Analysis, MEGA4’ software available at www.megasoftware.net/mega4/megaOpen in a separate windowFigure 2Two-pore potassium channel secondary structure. TPK channels comprise four transmembrane domains (1–4) and two pore regions (P) per subunit. Functional channels are formed from two subunits. In most TPKs, both P regions contain a K+ selectivity signature, GYGD. However, the tobacco NtTPKa isoform has different motifs in the second P domain. In the N terminal region, TPKs have a 14-3-3 binding domain that impact on channel activity, with the binding of 14-3-3 protein leading to channel activation. C-termini of TPKs show a varying number of putative Ca2+ binding “EF hands” which may vary from zero to two.  相似文献   
77.
78.
Ptilochronology is a cost effective tool for determining the nutritional condition of birds. The technique uses the daily growth of feathers to decipher diet and habitat quality as well as contaminant load. To date, most studies using ptilochronology have focused primarily on passerines. The use of the technique in other orders, primarily waterbirds, could lead to a significant increase in their utility as bioindicators of estuarine health. I performed a survey of study skins from the Museum of Natural History in New York, NY and the Smithsonian Natural History Museum in Washington, DC to determine whether feather growth bars are present in waterbird species. Three hundred specimens representing 52 species were examined (orders: Pelicaniformes, Suliformes, Gruiformes). Few species did not possess discernible feather growth-bars, and in one case, this may be attributed to a nocturnal foraging habit. Because the majority of species did exhibit measurable growth-bars, it seems as though ptilochronology can be applied in waterbird studies as an efficient tool for management purposes in estuarine habitats.  相似文献   
79.
80.
Recently, a genome‐wide association study (GWAS) that identified eight single‐nucleotide polymorphisms (SNPs) associated with BMI highlighted a possible neuronal influence on the development of obesity. We hypothesized these SNPs would govern the response of BMI and subcutaneous fat to resistance training in young individuals (age = 24 years). We genotyped the eight GWAS‐identified SNPs in the article by Willer et al. in a cohort (n = 796) that undertook a 12‐week resistance‐training program. Females with a copy of the rare allele (C) for rs17782313 (MC4R) had significantly higher BMIs (CC/CT: n = 174; 24.70 ± 0.33 kg/m2, TT: n = 278; 23.41 ± 0.26 kg/m2, P = 0.002), and the SNP explained 1.9% of overall variation in BMI. Males with a copy of the rare allele (T) for rs6548238 (TMEM18) had lower amounts of subcutaneous fat pretraining (CT/TT: n = 65; 156,534 ± 7,415 mm3, CC: n = 136; 177,825 ± 5,139 mm3, P = 0.019) and males with a copy of the rare allele (A) for rs9939609 (FTO) lost a significant amount of subcutaneous fat with exercise (AT/AA: n = 83; ?798.35 ± 2,624.30 mm3, TT: n = 47; 9,435.23 ± 3,494.44 mm3, P = 0.021). Females with a copy of the G allele for a missense variant in the SH2B1 (rs7498665) was associated with less change of subcutaneous fat volume with exercise (AG/GG: n = 191; 9,813 ± 2,250 mm3 vs. AA: n = 126; 770 ± 2,772 mm3; P = 0.011). These data support the original finding that there is an association between measures of obesity and a variant near the MC4R gene and extends these results to a younger population and implicates FTO, TMEM18, and SH2B1 polymorphisms in subcutaneous fat regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号